Skip to main content

Library for creating partial pydantic models (automatic converters) from different mappings

Project description

Pydantic Marshals

Library for creating partial pydantic models (automatic converters) from different mappings. Currently, it consists of basic boilerplate parts and functional implementation for sqlalchemy 2.0+ (included via extra)

Base Interface

TBA

Implementations

TBA

SQLAlchemy: Basic usage

# sqlalchemy 2.0+ is required
from sqlalchemy import ForeignKey, String, Text
from sqlalchemy.orm import Mapped, mapped_column, relationship

from pydantic_marshals.sqlalchemy import MappedModel

class Avatar(Base):
    __tablename__ = "avatars"
    id: Mapped[int] = mapped_column(primary_key=True)
    IdModel = MappedModel.create(columns=[id])

class User(Base):
    __tablename__ = "users"
    id: Mapped[int] = mapped_column(primary_key=True)
    name: Mapped[str] = mapped_column(String(100))
    description: Mapped[str | None] = mapped_column(Text())
    admin: Mapped[bool] = mapped_column()  # empty `mapped_column()` is required for models

    avatar_id: Mapped[int] = mapped_column(ForeignKey("avatars.id"))
    avatar: Mapped[Avatar] = relationship()

    @property
    def representation(self) -> str:
        return f"User #{self.id}: {self.name}"

    BaseModel = MappedModel.create(columns=[id])
    CreateModel = MappedModel.create(columns=[name, description])
    PatchModel = CreateModel.as_patch()
    IndexModel = MappedModel.create(properties=[representation])
    FullModel = BaseModel.extend(
        columns=[admin],
        relationships=[(avatar, Avatar.IdModel)],
        includes=[CreateModel, IndexModel],
    )


with sessionmaker.begin() as session:
    user = User(name="alex", description="cool person", avatar=Avatar(), admin=False)
    session.add(user)
    session.flush()

    print(User.BaseModel.model_validate(user).model_dump())
    # {"id": 0}
    print(User.PatchModel.model_validate({}).model_dump(exclude_defaults=True))
    # {}
    print(User.PatchModel.model_validate({"description": None}).model_dump(exclude_defaults=True))
    # {"description": None}
    print(User.CreateModel.model_validate(user).model_dump())
    # {"name": "alex", "description": "cool person"}
    print(User.IndexModel.model_validate(user).model_dump())
    # {"representation": "User #0: alex"}
    print(User.FullModel.model_validate(user).model_dump())
    # {
    #   "id": 0,
    #   "name": "alex",
    #   "description": "cool person",
    #   "representation": "User #0: alex",
    #   "avatar": {"id": 0},
    #   "admin": False
    # }

Assert Contains

The "assert contains" is an interface for validating data, mainly used in testing. Use "assert-contains" extra to install this module:

pip install pydantic-marshals[assert-contains]

Documentation:

Local development

  1. Clone the repository
  2. Setup python (the library is made with python 3.10+)
  3. Install poetry (should work with v1.4.1)
  4. Install dependencies
  5. Install pre-commit hooks

Commands to use:

pip install poetry==1.4.1
poetry install
pre-commit install

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_marshals-0.3.8.tar.gz (11.7 kB view details)

Uploaded Source

Built Distribution

pydantic_marshals-0.3.8-py3-none-any.whl (20.6 kB view details)

Uploaded Python 3

File details

Details for the file pydantic_marshals-0.3.8.tar.gz.

File metadata

  • Download URL: pydantic_marshals-0.3.8.tar.gz
  • Upload date:
  • Size: 11.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.1 CPython/3.11.1 Windows/10

File hashes

Hashes for pydantic_marshals-0.3.8.tar.gz
Algorithm Hash digest
SHA256 c35f15d08d9dfc95170a9cb2701eaabe28ea5bc7727c574ddb775ff97ac34ffc
MD5 ced3351de606fbb72652eac49276f1cc
BLAKE2b-256 c42a3b8390af737d78f60055fb590e4e188b11ce181ccabe48e7f0054d950e75

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_marshals-0.3.8-py3-none-any.whl.

File metadata

File hashes

Hashes for pydantic_marshals-0.3.8-py3-none-any.whl
Algorithm Hash digest
SHA256 1da676b05327b5b3fd7f6650efaa129ced7f1a3b9ce8f10653756f02310935fd
MD5 dac8d58ec4f7c2a715c4f591c8b77efa
BLAKE2b-256 6daf1ea5554f76f788f26505ef04b527bc6345042f3c8f76b2e6b4c38c2b6694

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page