QuantLib Python Objects with Typing
Project description
Pydantic QuantLib
QuantLib Python Objects with Typing
Free software: MIT license
Documentation: https://pydantic-quantlib.readthedocs.io.
Features
This package uses pydantic to wrap QuantLib to provide a set of Typed class factories.
The pydantic models are auto-generated from the QuantLib SWIG bindings. The autogen code is available on request.
In the following example we construct a European Option.
import pydantic_quantlib as pql
payoff = pql.PlainVanillaPayoff(type=pql.OptionType.Put, strike=40)
european_exercise = pql.EuropeanExercise(date=pql.Date(d=4, m=1, y=2022))
european_option = pql.VanillaOptionBase(payoff=payoff, exercise=european_exercise)
The option can be converted to the usual QuantLib object for computation as seen in this fuller example.
>>> european_option.to_quantlib()
'<QuantLib.QuantLib.VanillaOption; proxy of <Swig Object of type 'ext::shared_ptr< VanillaOption > *' at 0x7f6559ddabd0> >'
it can also be printed:
>>> print(european_option)
'PlainVanillaPayoff(type=<OptionType.Put: -1>, strike=40.0) exercise=EuropeanExercise(date=Date0(d=4.0, m=1.0, y=2022.0))'
it can be converted to JSON:
>>> european_option.json()
'{"resource_name": "VanillaOption", "payoff": {"resource_name": "PlainVanillaPayoff", "type": -1, "strike": 40.0}, "exercise": {"resource_name": "EuropeanExercise", "date": {"resource_name": "Date", "d": 4, "m": 1, "y": 2022}}}'
and it can be loaded from JSON:
>>> json_repr = '{"resource_name": "VanillaOption", "payoff": {"resource_name": "PlainVanillaPayoff", "type": -1, "strike": 40.0}, "exercise": {"resource_name": "EuropeanExercise", "date": {"resource_name": "Date", "d": 4, "m": 1, "y": 2022}}}'
>>> pql.VanillaOption.parse_obj(json.loads(json_repr))
Credits
This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.
History
0.1.0 (2021-01-04)
First release on PyPI.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pydantic_quantlib-0.3.0.tar.gz
.
File metadata
- Download URL: pydantic_quantlib-0.3.0.tar.gz
- Upload date:
- Size: 48.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1d903407af2aafb850a71ca106f53e4612759b8f1c1ed3991158e4fb4ff92ac9 |
|
MD5 | 0b6fe093cbd5a766e65297a959a9748e |
|
BLAKE2b-256 | b5aeb658ec168e5105274c15b0c1582016bfb022f0adc76c0a56f9e88097bdff |
File details
Details for the file pydantic_quantlib-0.3.0-py2.py3-none-any.whl
.
File metadata
- Download URL: pydantic_quantlib-0.3.0-py2.py3-none-any.whl
- Upload date:
- Size: 36.9 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9c19a06fa9f6f70d7342134ee00dd05b17fa56fe2151e423f42e73c1b02dc087 |
|
MD5 | 659fc3bd953ac070c729880550f92550 |
|
BLAKE2b-256 | 54d6ea2d0c2f04704399bdac5bab4702262c0c32adf6d0be3b77e2dfc7876294 |