It just provide a pair of pre & post methods around pydantic fields, the rest is up to your imagination
Project description
Pydantic-resolve is a schema based solution for data composition, it can provide you with 3 ~ 5 times the increase in development efficiency and reduce the amount of code by more than 50%.
- It manages the deep data inside each schema, instead of visiting from outside by manual traversal.
- It runs a Level Order Traversal (BFS) inside and execute
resolve
andpost
during this process. - It describes the relationship between data in a form close to ERD (entity relationship diagram)
Install
User of pydantic v2, please use pydantic2-resolve instead.
This lib now supports both pydantic v1 and v2 starts from v1.11.0
pip install pydantic-resolve
Hello world
manage your data inside the schema.
class Tree(BaseModel):
name: str
number: int
description: str = ''
def resolve_description(self):
return f"I'm {self.name}, my number is {self.number}"
children: list['Tree'] = []
tree = dict(
name='root',
number=1,
children=[
dict(
name='child1',
number=2,
children=[
dict(
name='child1-1',
number=3,
),
dict(
name='child1-2',
number=4,
),
]
)
]
)
async def main():
t = Tree.parse_obj(tree)
t = await Resolver().resolve(t)
print(t.json(indent=4))
import asyncio
asyncio.run(main())
output
{
"name": "root",
"number": 1,
"description": "I'm root, my number is 1",
"children": [
{
"name": "child1",
"number": 2,
"description": "I'm child1, my number is 2",
"children": [
{
"name": "child1-1",
"number": 3,
"description": "I'm child1-1, my number is 3",
"children": []
},
{
"name": "child1-2",
"number": 4,
"description": "I'm child1-2, my number is 4",
"children": []
}
]
}
]
}
Composing a subset from ERD definitions
define elements of ERD, schema (entity), dataloader (relationship).
then pick and compose them together according to your requirement and get the result.
import asyncio
import json
from typing import Optional
from pydantic import BaseModel
from pydantic_resolve import Resolver, build_object, build_list, LoaderDepend
from aiodataloader import DataLoader
# Schema/ Entity
class Comment(BaseModel):
id: int
content: str
user_id: int
class Blog(BaseModel):
id: int
title: str
content: str
class User(BaseModel):
id: int
name: str
# Loaders/ relationships
class CommentLoader(DataLoader):
async def batch_load_fn(self, comment_ids):
comments = [
dict(id=1, content="world is beautiful", blog_id=1, user_id=1),
dict(id=2, content="Mars is beautiful", blog_id=2, user_id=2),
dict(id=3, content="I love Mars", blog_id=2, user_id=3),
]
return build_list(comments, comment_ids, lambda c: c['blog_id'])
class UserLoader(DataLoader):
async def batch_load_fn(self, user_ids):
users = [ dict(id=1, name="Alice"), dict(id=2, name="Bob"), ]
return build_object(users, user_ids, lambda u: u['id'])
# Compose schemas and dataloaders together
class CommentWithUser(Comment):
user: Optional[User] = None
def resolve_user(self, loader=LoaderDepend(UserLoader)):
return loader.load(self.user_id)
class BlogWithComments(Blog):
comments: list[CommentWithUser] = []
def resolve_comments(self, loader=LoaderDepend(CommentLoader)):
return loader.load(self.id)
# Run
async def main():
raw_blogs =[
dict(id=1, title="hello world", content="hello world detail"),
dict(id=2, title="hello Mars", content="hello Mars detail"),
]
blogs = await Resolver().resolve([BlogWithComments.parse_obj(b) for b in raw_blogs])
print(json.dumps(blogs, indent=2, default=lambda o: o.dict()))
asyncio.run(main())
output
[
{
"id": 1,
"title": "hello world",
"content": "hello world detail",
"comments": [
{
"id": 1,
"content": "world is beautiful",
"user_id": 1,
"user": {
"id": 1,
"name": "Alice"
}
}
]
},
{
"id": 2,
"title": "hello Mars",
"content": "hello Mars detail",
"comments": [
{
"id": 2,
"content": "Mars is beautiful",
"user_id": 2,
"user": {
"id": 2,
"name": "Bob"
}
},
{
"id": 3,
"content": "I love Mars",
"user_id": 3,
"user": null
}
]
}
]
Documents
- Quick start: https://allmonday.github.io/pydantic-resolve/about/
- API: https://allmonday.github.io/pydantic-resolve/reference_api/
- Demo: https://github.com/allmonday/pydantic-resolve-demo
- Composition oriented pattern: https://github.com/allmonday/composition-oriented-development-pattern
Test and coverage
tox
tox -e coverage
python -m http.server
latest coverage: 98%
Sponsor
If this code helps and you wish to support me
Paypal: https://www.paypal.me/tangkikodo
Discussion
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pydantic_resolve-1.11.1.tar.gz
.
File metadata
- Download URL: pydantic_resolve-1.11.1.tar.gz
- Upload date:
- Size: 17.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.10.4 Linux/5.15.167.4-microsoft-standard-WSL2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9819e60e272cd63200e8ede9350d04ba6d2d52a38a573d78b650cc50891f81b9 |
|
MD5 | f6e3c99870f7b3897b1c02c97232012a |
|
BLAKE2b-256 | 38351df7bd8396773075f98cb7ab5a4726df813c37460cd813fb46f5722d9141 |
File details
Details for the file pydantic_resolve-1.11.1-py3-none-any.whl
.
File metadata
- Download URL: pydantic_resolve-1.11.1-py3-none-any.whl
- Upload date:
- Size: 20.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.10.4 Linux/5.15.167.4-microsoft-standard-WSL2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ff00d4620fe72b0febbd2e0f1b6e446b4fd0761d54e6fb4aa0672b3795b9bceb |
|
MD5 | bdce35f567bb98b42a2efc9cc5008ba4 |
|
BLAKE2b-256 | dbbc65c15bac87778da997e94abf2e6ae3a993501a8322f7f1f9a372adddde9c |