Skip to main content

Tools to convert SQLAlchemy models to Pydantic models

Project description

Pydantic-SQLAlchemy

Test Publish Coverage Package version

Tools to generate Pydantic models from SQLAlchemy models.

Still experimental.

How to use

Quick example:

from typing import List

from pydantic_sqlalchemy import sqlalchemy_to_pydantic
from sqlalchemy import Column, ForeignKey, Integer, String, create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import Session, relationship, sessionmaker

Base = declarative_base()

engine = create_engine("sqlite://", echo=True)


class User(Base):
    __tablename__ = "users"

    id = Column(Integer, primary_key=True)
    name = Column(String)
    fullname = Column(String)
    nickname = Column(String)

    addresses = relationship(
        "Address", back_populates="user", cascade="all, delete, delete-orphan"
    )


class Address(Base):
    __tablename__ = "addresses"
    id = Column(Integer, primary_key=True)
    email_address = Column(String, nullable=False)
    user_id = Column(Integer, ForeignKey("users.id"))

    user = relationship("User", back_populates="addresses")


PydanticUser = sqlalchemy_to_pydantic(User)
PydanticAddress = sqlalchemy_to_pydantic(Address)


class PydanticUserWithAddresses(PydanticUser):
    addresses: List[PydanticAddress] = []


Base.metadata.create_all(engine)


LocalSession = sessionmaker(bind=engine)

db: Session = LocalSession()

ed_user = User(name="ed", fullname="Ed Jones", nickname="edsnickname")

address = Address(email_address="ed@example.com")
address2 = Address(email_address="eddy@example.com")
ed_user.addresses = [address, address2]
db.add(ed_user)
db.commit()


def test_pydantic_sqlalchemy():
    user = db.query(User).first()
    pydantic_user = PydanticUser.from_orm(user)
    data = pydantic_user.dict()
    assert data == {
        "fullname": "Ed Jones",
        "id": 1,
        "name": "ed",
        "nickname": "edsnickname",
    }
    pydantic_user_with_addresses = PydanticUserWithAddresses.from_orm(user)
    data = pydantic_user_with_addresses.dict()
    assert data == {
        "fullname": "Ed Jones",
        "id": 1,
        "name": "ed",
        "nickname": "edsnickname",
        "addresses": [
            {"email_address": "ed@example.com", "id": 1, "user_id": 1},
            {"email_address": "eddy@example.com", "id": 2, "user_id": 1},
        ],
    }

Release Notes

Latest Changes

0.0.9

  • ✨ Add poetry-version-plugin, remove importlib-metadata dependency. PR #32 by @tiangolo.

0.0.8.post1

  • 💚 Fix setting up Poetry for GitHub Action Publish. PR #23 by @tiangolo.

0.0.8

  • ⬆️ Upgrade importlib-metadata to 3.0.0. PR #22 by @tiangolo.
  • 👷 Add GitHub Action latest-changes. PR #20 by @tiangolo.
  • 💚 Fix GitHub Actions Poetry setup. PR #21 by @tiangolo.

0.0.7

  • Update requirements of importlib-metadata to support the latest version 2.0.0. PR #11.

0.0.6

0.0.5

  • Exclude columns before checking their Python types. PR #5 by @ZachMyers3.

0.0.4

  • Do not include SQLAlchemy defaults in Pydantic models. PR #4.

0.0.3

  • Add support for exclude to exclude columns from Pydantic model. PR #3.
  • Add support for overriding the Pydantic config. PR #1 by @pyropy.
  • Add CI with GitHub Actions. PR #2.

License

This project is licensed under the terms of the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic-sqlalchemy-0.0.9.tar.gz (4.6 kB view details)

Uploaded Source

Built Distribution

pydantic_sqlalchemy-0.0.9-py3-none-any.whl (4.5 kB view details)

Uploaded Python 3

File details

Details for the file pydantic-sqlalchemy-0.0.9.tar.gz.

File metadata

  • Download URL: pydantic-sqlalchemy-0.0.9.tar.gz
  • Upload date:
  • Size: 4.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.0a1 CPython/3.7.10 Linux/5.4.0-1047-azure

File hashes

Hashes for pydantic-sqlalchemy-0.0.9.tar.gz
Algorithm Hash digest
SHA256 82035d4b3f8019b2e3f070b7ce3f764a30ada03b632c1b5df54dd4c49438de6a
MD5 d4748f92a38b7514728c77a82d0b1c0d
BLAKE2b-256 a492a763ab9e19a4f1dc494d3d0577c4074e295c33a89aebd1aa7b0bf20bfb88

See more details on using hashes here.

File details

Details for the file pydantic_sqlalchemy-0.0.9-py3-none-any.whl.

File metadata

File hashes

Hashes for pydantic_sqlalchemy-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 5b8e3df9dc282d071478d7e5f7aeda8db5356c86c8ba68cd1a1293ead2a3cea8
MD5 2f9505cd9652ddd85e9ea837aa17f8d5
BLAKE2b-256 21bc13a381c660ef0f7cc968317c3123880c3f972355244a8b547195814d498a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page