Skip to main content

Tools to convert SQLAlchemy models to Pydantic models. For use with SQLAlchemy 2.0

Project description

Pydantic-SQLAlchemy

Test Publish Coverage Package version

Tools to generate Pydantic models from SQLAlchemy models.

Still experimental.

How to use

Quick example:

from typing import List

from pydantic_sqlalchemy_2 import sqlalchemy_to_pydantic
from sqlalchemy import Column, ForeignKey, Integer, String, create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import Session, relationship, sessionmaker

Base = declarative_base()

engine = create_engine("sqlite://", echo=True)


class User(Base):
    __tablename__ = "users"

    id = Column(Integer, primary_key=True)
    name = Column(String)
    fullname = Column(String)
    nickname = Column(String)

    addresses = relationship(
        "Address", back_populates="user", cascade="all, delete, delete-orphan"
    )


class Address(Base):
    __tablename__ = "addresses"
    id = Column(Integer, primary_key=True)
    email_address = Column(String, nullable=False)
    user_id = Column(Integer, ForeignKey("users.id"))

    user = relationship("User", back_populates="addresses")


PydanticUser = sqlalchemy_to_pydantic(User)
PydanticAddress = sqlalchemy_to_pydantic(Address)


class PydanticUserWithAddresses(PydanticUser):
    addresses: List[PydanticAddress] = []


Base.metadata.create_all(engine)

LocalSession = sessionmaker(bind=engine)

db: Session = LocalSession()

ed_user = User(name="ed", fullname="Ed Jones", nickname="edsnickname")

address = Address(email_address="ed@example.com")
address2 = Address(email_address="eddy@example.com")
ed_user.addresses = [address, address2]
db.add(ed_user)
db.commit()


def test_pydantic_sqlalchemy():
    user = db.query(User).first()
    pydantic_user = PydanticUser.from_orm(user)
    data = pydantic_user.dict()
    assert data == {
        "fullname": "Ed Jones",
        "id": 1,
        "name": "ed",
        "nickname": "edsnickname",
    }
    pydantic_user_with_addresses = PydanticUserWithAddresses.from_orm(user)
    data = pydantic_user_with_addresses.dict()
    assert data == {
        "fullname": "Ed Jones",
        "id": 1,
        "name": "ed",
        "nickname": "edsnickname",
        "addresses": [
            {"email_address": "ed@example.com", "id": 1, "user_id": 1},
            {"email_address": "eddy@example.com", "id": 2, "user_id": 1},
        ],
    }

Release Notes

Latest Changes

0.0.9

  • ✨ Add poetry-version-plugin, remove importlib-metadata dependency. PR #32 by @tiangolo.

0.0.8.post1

  • 💚 Fix setting up Poetry for GitHub Action Publish. PR #23 by @tiangolo.

0.0.8

  • ⬆️ Upgrade importlib-metadata to 3.0.0. PR #22 by @tiangolo.
  • 👷 Add GitHub Action latest-changes. PR #20 by @tiangolo.
  • 💚 Fix GitHub Actions Poetry setup. PR #21 by @tiangolo.

0.0.7

  • Update requirements of importlib-metadata to support the latest version 2.0.0. PR #11.

0.0.6

0.0.5

  • Exclude columns before checking their Python types. PR #5 by @ZachMyers3.

0.0.4

  • Do not include SQLAlchemy defaults in Pydantic models. PR #4.

0.0.3

  • Add support for exclude to exclude columns from Pydantic model. PR #3.
  • Add support for overriding the Pydantic config. PR #1 by @pyropy.
  • Add CI with GitHub Actions. PR #2.

License

This project is licensed under the terms of the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_sqlalchemy_2-0.tar.gz (4.0 kB view details)

Uploaded Source

Built Distribution

pydantic_sqlalchemy_2-0-py3-none-any.whl (4.5 kB view details)

Uploaded Python 3

File details

Details for the file pydantic_sqlalchemy_2-0.tar.gz.

File metadata

  • Download URL: pydantic_sqlalchemy_2-0.tar.gz
  • Upload date:
  • Size: 4.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.11.4 Darwin/22.6.0

File hashes

Hashes for pydantic_sqlalchemy_2-0.tar.gz
Algorithm Hash digest
SHA256 a400b8c822f7d70a2317dc88b5f66297fcff1d0c89d3e8be066038bb2dfb290e
MD5 9a5098de8f3588e65a09f5a0cf572691
BLAKE2b-256 e0f11e9cf5f849c62f85af1221a9ccdcf2960ee4e579f3b40b055ae068493dee

See more details on using hashes here.

File details

Details for the file pydantic_sqlalchemy_2-0-py3-none-any.whl.

File metadata

File hashes

Hashes for pydantic_sqlalchemy_2-0-py3-none-any.whl
Algorithm Hash digest
SHA256 47a965204b7a112efe60c2d9d56b6a3932f3ece4ee7ef403656a3b6a09af9171
MD5 5d871168543c06be82708581f8fdaa20
BLAKE2b-256 938d3f63fdadf43d9e047a2890f90c91c0265c72f0b5707205bd6202f7abcf7b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page