Skip to main content

Tools to convert SQLAlchemy models to Pydantic models

Project description

Pydantic-SQLAlchemy

Tools to generate Pydantic models from SQLAlchemy models.

Still experimental.

How to use

Quick example:

from typing import List

from pydantic_sqlalchemy import sqlalchemy_to_pydantic
from sqlalchemy import Column, ForeignKey, Integer, String, create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import Session, relationship, sessionmaker

Base = declarative_base()

engine = create_engine("sqlite://", echo=True)


class User(Base):
    __tablename__ = "users"

    id = Column(Integer, primary_key=True)
    name = Column(String)
    fullname = Column(String)
    nickname = Column(String)

    addresses = relationship(
        "Address", back_populates="user", cascade="all, delete, delete-orphan"
    )


class Address(Base):
    __tablename__ = "addresses"
    id = Column(Integer, primary_key=True)
    email_address = Column(String, nullable=False)
    user_id = Column(Integer, ForeignKey("users.id"))

    user = relationship("User", back_populates="addresses")


PydanticUser = sqlalchemy_to_pydantic(User)
PydanticAddress = sqlalchemy_to_pydantic(Address)


class PydanticUserWithAddresses(PydanticUser):
    addresses: List[PydanticAddress] = []


Base.metadata.create_all(engine)


LocalSession = sessionmaker(bind=engine)

db: Session = LocalSession()

ed_user = User(name="ed", fullname="Ed Jones", nickname="edsnickname")

address = Address(email_address="ed@example.com")
address2 = Address(email_address="eddy@example.com")
ed_user.addresses = [address, address2]
db.add(ed_user)
db.commit()


def test_pydantic_sqlalchemy():
    user = db.query(User).first()
    pydantic_user = PydanticUser.from_orm(user)
    data = pydantic_user.dict()
    assert data == {
        "fullname": "Ed Jones",
        "id": 1,
        "name": "ed",
        "nickname": "edsnickname",
    }
    pydantic_user_with_addresses = PydanticUserWithAddresses.from_orm(user)
    data = pydantic_user_with_addresses.dict()
    assert data == {
        "fullname": "Ed Jones",
        "id": 1,
        "name": "ed",
        "nickname": "edsnickname",
        "addresses": [
            {"email_address": "ed@example.com", "id": 1, "user_id": 1},
            {"email_address": "eddy@example.com", "id": 2, "user_id": 1},
        ],
    }

License

This project is licensed under the terms of the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic-sqlalchemy-0.0.2.tar.gz (3.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

pydantic_sqlalchemy-0.0.2-py3-none-any.whl (3.6 kB view details)

Uploaded Python 3

File details

Details for the file pydantic-sqlalchemy-0.0.2.tar.gz.

File metadata

  • Download URL: pydantic-sqlalchemy-0.0.2.tar.gz
  • Upload date:
  • Size: 3.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.5 CPython/3.6.9 Linux/4.15.0-99-generic

File hashes

Hashes for pydantic-sqlalchemy-0.0.2.tar.gz
Algorithm Hash digest
SHA256 f2b2b0eca08a25ec43c4ca74192993b94e75cefeb41585b106fe007dc308bad2
MD5 d1c2a66a6c88c9c3eb53f351566129c3
BLAKE2b-256 97ab43ef00b0e93f4609b121d3f0250df3181f2c0c9d2fd35843223eedbd49c7

See more details on using hashes here.

File details

Details for the file pydantic_sqlalchemy-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: pydantic_sqlalchemy-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 3.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.5 CPython/3.6.9 Linux/4.15.0-99-generic

File hashes

Hashes for pydantic_sqlalchemy-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 aec930326cb7c0fe9b2e22ddf5ac8b1bb6cc054d37911cf35390511ddd36aef6
MD5 5b9250db49ce5a075a54626617a31c75
BLAKE2b-256 a84a6a444be4afb16574ee5dbd68c5a4db5f4d615fafc955118730b73c7f3341

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page