Simple package for storing pydantic BaseModels in an in-memory SQLite database.
Project description
pydantic_sqlite
A lightweight package designed for stroing pydantic BaseModels in an in-memory SQLite database.
Installation
pip install pydantic-sqlite
Basic Example
Creating two instances of the class Person and store them in the 'Test' table of the database. Then, retrieve and display all records from the 'Test' table through iteration."
from pydantic_sqlite import DataBase
from pydantic import BaseModel
from uuid import uuid4
class Person(BaseModel):
uuid: str
name: str
age: int
test1 = Person(uuid=str(uuid4()), name="Bob", age=12)
test2 = Person(uuid=str(uuid4()), name="Alice", age=28)
db = DataBase()
db.add("Test", test1)
db.add("Test", test2)
for x in db("Test"):
assert issubclass(x.__class__, BaseModel)
assert isinstance(x, Person)
print(x)
#>>> uuid='10d002bc-9941-4943-a46b-82b8214bf618' name='Bob' age=12
#>>> uuid='595fd605-4684-4f78-96a5-8420bdb3fc0f' name='Alice' age=28
Nested Example
Instantiate an address object and two person objects, with each person having an attribute of the address type. Upon adding the person to the database, the database requires the foreign table 'Addresses' to establish the foreign key relationship. Consequently, when iterating over the 'Persons' table, it enables the reconstruction of complete 'Person' objects, each possessing an attribute of the 'Address' type.
from pydantic_sqlite import DataBase
from pydantic import BaseModel
from uuid import uuid4
class Address(BaseModel):
uuid: str
town: str
street: str
number: int
class Person(BaseModel):
uuid: str
name: str
address: Address
address = Address(uuid=str(uuid4()), town="Berlin", street="Bahnhofstraße", number=67)
person1 = Person(uuid=str(uuid4()), name="Bob", address=address)
person2 = Person(uuid=str(uuid4()), name="Alice", address=address)
db = DataBase()
db.add("Adresses", address)
db.add("Persons", person1, foreign_tables={'address': 'Adresses'})
db.add("Persons", person2, foreign_tables={'address': 'Adresses'})
for x in db("Adresses"):
assert issubclass(x.__class__, BaseModel)
assert isinstance(x, Address)
print(x)
for y in db("Persons"):
assert issubclass(y.__class__, BaseModel)
assert isinstance(y, Person)
print(y)
#>>> uuid='7cd5410e-cfaa-481e-a201-ad04cd959719' town='Berlin' street='Bahnhofstraße' number=67
#>>> uuid='cc1cedaf-dac5-4fc2-a11a-41c6631271a5' name='Bob' address=Address(uuid='7cd5410e-cfaa-481e-a201-ad04cd959719', town='Berlin', street='Bahnhofstraße', number=67)
#>>> uuid='b144ed22-d8a4-46da-8a18-e34c260d7c45' name='Alice' address=Address(uuid='7cd5410e-cfaa-481e-a201-ad04cd959719', town='Berlin', street='Bahnhofstraße', number=67)
Nested Example without foreign Table
If you prefer to avoid an extra table, you have the option to store an object of the BaseModel type differently.
In this scenario, the address object isn't stored in a separate table but rather as a string within a column of the 'Persons' table. To achieve this, the Address class includes the SQConfig class, which must define the convert method, specifying how the object should be stored in SQLite. Upon retrieval, an Address object is reconstructed from the stored string using a field_validator.
from uuid import uuid4
from pydantic import BaseModel, field_validator
from pydantic_sqlite import DataBase
class Address(BaseModel):
town: str
street: str
class SQConfig:
special_insert: bool = True
def convert(obj):
return f"{obj.town},{obj.street}"
class Person(BaseModel):
uuid: str
name: str
address: Address
@field_validator('address', mode="before")
def validate(cls, v):
if isinstance(v, Address):
return v
town, street = v.split(',')
return Address(town=town, street=street)
address = Address(town="Berlin", street="Bahnhofstraße 67")
person1 = Person(uuid=str(uuid4()), name="Bob", address=address)
person2 = Person(uuid=str(uuid4()), name="Alice", address=address)
db = DataBase()
db.add("Persons", person1)
db.add("Persons", person2)
for y in db("Persons"):
assert issubclass(y.__class__, BaseModel)
assert isinstance(y, Person)
print(y)
#>>> uuid='802f50d6-b6a2-47f4-bb96-4375790daed9' name='Bob' address=Address(town='Berlin', street='Bahnhofstraße 67')
#>>> uuid='79488c0d-44c8-4a6a-afa3-1ed0b88af4a2' name='Alice' address=Address(town='Berlin', street='Bahnhofstraße 67')
DB_Handler
The DB_handler serves as a wrapper for the DataBase. The database returned by the context manager functions identically to those in previous examples.
However, the handler offers an added benefit: in case of an exception, it automatically saves a database snapshot with the latest values as '<<dbname_crash>>.db'. If such a file already exists, the filename is iteratively incremented.
For instance, running this example generates two files: 'hello.db' and 'hello_crash.db'. Executing the script again, a snapchot file called 'hello_crash(1).db' will be created
from uuid import uuid4
from pydantic import BaseModel
from pydantic_sqlite import DB_Handler
class Person(BaseModel):
uuid: str
name: str
age: int
with DB_Handler("hello") as db:
test1 = Person(uuid=str(uuid4()), name="Bob", age=12)
db.add("Test", test1)
for x in db("Test"):
assert issubclass(x.__class__, BaseModel)
assert isinstance(x, Person)
print(x)
db.save("hello_world.db")
raise Exception("test")
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pydantic_sqlite-0.3.0.tar.gz
.
File metadata
- Download URL: pydantic_sqlite-0.3.0.tar.gz
- Upload date:
- Size: 7.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.2 CPython/3.12.1 Linux/6.5.0-1018-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cc9d3c1b01582f8f26b988fc58fdbd2f5dea4d1a7d76b80e1394f8c11d7831e8 |
|
MD5 | 31f48c38f964b340d411edbea1eb050b |
|
BLAKE2b-256 | 73c0bf8cdae7efbcab7d9fdf35a0ff2af6c75e9ef026466821fd2e753ec94c57 |
File details
Details for the file pydantic_sqlite-0.3.0-py3-none-any.whl
.
File metadata
- Download URL: pydantic_sqlite-0.3.0-py3-none-any.whl
- Upload date:
- Size: 9.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.2 CPython/3.12.1 Linux/6.5.0-1018-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 62efe8437c279e6b47e09ddc5a718ebfb0d91cbbdc28b2f8b80f0f7b07590799 |
|
MD5 | 8fa5aafa2d67fc5b0a0bac3b896aff7a |
|
BLAKE2b-256 | 50278c66a6154e8d04d1903bce8a27d21f79ab15e96ff125c03457a4ad4310e3 |