A powerful AI framework with structured Pydantic responses, flexible LLM integration, and advanced agent capabilities
Project description
Pydantic2 🚀
A powerful Python framework for building AI applications with structured responses, powered by Pydantic AI and OpenRouter.
Features 🌟
- 🔒 Type-Safe Responses: Built on Pydantic AI for robust type validation
- 🌐 Online Search: Real-time internet access for up-to-date information
- 💰 Budget Control: Built-in cost tracking and budget management
- 📊 Usage Monitoring: Detailed token and cost tracking
- 🔄 Async Support: Both sync and async interfaces
- 🛡️ Error Handling: Comprehensive exception system
- 🎨 Colored Logging: Beautiful console output with detailed logs
- 🔍 Database Viewer: Built-in CLI tools to inspect models and usage databases
Installation 📦
Using Poetry (Recommended)
If you're using Poetry for dependency management, you can install the package with:
poetry add pydantic2
Using pip
If you're using pip, you can install the package with:
pip install pydantic2
Development Installation
Using Poetry (Recommended)
- Clone the repository:
git clone https://github.com/markolofsen/pydantic2.git
cd pydantic2
- Install dependencies:
poetry install
- Run tests:
poetry run pytest
Using pip
- Clone the repository:
git clone https://github.com/markolofsen/pydantic2.git
cd pydantic2
- Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
- Install development dependencies:
pip install -e ".[dev]"
- Run tests:
pytest
Quick Start ⚡
from typing import List
from pydantic import BaseModel, Field
from pydantic2 import PydanticAIClient
class ChatResponse(BaseModel):
"""Response format for chat messages."""
message: str = Field(description="The chat response message")
sources: List[str] = Field(default_factory=list, description="Sources used in the response")
confidence: float = Field(ge=0, le=1, description="Confidence score of the response")
def main():
# Initialize client with usage tracking using context manager
with PydanticAIClient(
model_name="openai/gpt-4o-mini-2024-07-18",
client_id="test_client",
user_id="test_user",
verbose=False,
retries=3,
online=True,
# max_budget=0.0003
) as client:
try:
# Set up the conversation with system message
client.message_handler.add_message_system(
"You are a helpful AI assistant. Be concise but informative."
)
# Add user message
client.message_handler.add_message_user("What is the capital of France?")
# Add structured data block (optional)
client.message_handler.add_message_block(
"CONTEXT",
{
"topic": "Geography",
"region": "Europe",
"country": "France"
}
)
# Generate response (synchronously)
response: ChatResponse = client.generate(
result_type=ChatResponse
)
# Print the response
print("\nAI Response:")
print(response.model_dump_json(indent=2))
# Print usage statistics
stats = client.get_usage_stats()
if stats:
print("\nUsage Statistics:")
print(f"Total Requests: {stats.get('total_requests', 0)}")
print(f"Total Cost: ${stats.get('total_cost', 0):.4f}")
except Exception as e:
print(f"\nError: {str(e)}")
if __name__ == "__main__":
main()
CLI Tools 🔍
Pydantic2 provides a convenient CLI tool for viewing and managing databases. The tool automatically opens your default browser when starting a database viewer.
# Launch interactive database viewer
pydantic2 --db
# Show help
pydantic2 --help
The interactive database viewer allows you to:
- View Models Database
- View Usage Database
- View Sessions Database
- Kill processes on specific ports
- Exit the viewer
The databases are automatically created and maintained as you use the library:
- Models Database: Stores information about models, parameters, and capabilities
- Usage Database: Tracks requests, tokens, costs, and usage statistics
- Sessions Database: Stores conversation history and context
Key Features 🔑
Type-Safe Responses
from pydantic import BaseModel, Field
from typing import List
class Analysis(BaseModel):
summary: str = Field(description="Brief summary")
key_points: List[str] = Field(description="Main points")
sentiment: float = Field(ge=-1, le=1, description="Sentiment score")
Online Search Mode
client = PydanticAIClient(
model_name="openai/gpt-4o-mini",
online=True # Enables real-time internet access
)
Budget Management
client = PydanticAIClient(
max_budget=1.0, # Set $1 limit
verbose=True # See detailed cost tracking
)
try:
response = client.generate(...)
except BudgetExceeded as e:
print(f"Budget exceeded: ${e.current_cost:.4f} / ${e.budget_limit:.4f}")
Async Support
async def get_analysis():
async with PydanticAIClient() as client:
return await client.generate_async(
result_type=Analysis,
user_prompt="Analyze this text..."
)
Error Handling
from pydantic2.client.exceptions import (
BudgetExceeded, ValidationError, NetworkError, PydanticAIError
)
try:
response = client.generate(...)
except BudgetExceeded as e:
print(f"Budget limit reached: ${e.budget_limit:.4f}")
except ValidationError as e:
print(f"Invalid response format: {e.errors}")
except NetworkError as e:
print(f"Network error ({e.status_code}): {e.message}")
except PydanticAIError as e:
print(f"Other error: {e}")
Usage Tracking
stats = client.get_usage_stats()
print(f"Total Requests: {stats['total_requests']}")
print(f"Total Tokens: {stats['total_tokens']}")
print(f"Total Cost: ${stats['total_cost']:.4f}")
Advanced Usage 🔧
Custom Response Models
class ProductAnalysis(BaseModel):
name: str = Field(description="Product name")
pros: List[str] = Field(description="Advantages")
cons: List[str] = Field(description="Disadvantages")
rating: float = Field(ge=0, le=10, description="Overall rating")
recommendation: str = Field(description="Buy/Hold/Sell recommendation")
client = PydanticAIClient(online=True)
analysis = client.generate(
result_type=ProductAnalysis,
user_prompt="Analyze the latest iPhone"
)
Message Handling
# Add system context
client.message_handler.add_message_system(
"You are a professional product analyst."
)
# Add user message
client.message_handler.add_message_user(
"What are the pros and cons of Product X?"
)
# Generate structured response
response = client.generate(result_type=ProductAnalysis)
Support & Community 👥
License 📝
This project is licensed under the MIT License - see the LICENSE file for details.
Credits ✨
Developed by Unrealos Inc. - We create innovative AI-powered solutions for business. Meet our team.