Skip to main content

A python package to query data via amazon athena and bring it into a pandas df using aws-wrangler.

Project description

pydbtools

A package that is used to run SQL queries speficially configured for the Analytical Platform. This packages uses AWS Wrangler's Athena module but adds additional functionality (like Jinja templating, creating temporary tables) and alters some configuration to our specification.

Installation

Requires a pip release above 20.

## To install from pypi
pip install pydbtools

## Or install from git with a specific release
pip install "pydbtools @ git+https://github.com/moj-analytical-services/pydbtools@v4.0.1"

Quickstart guide

The examples directory contains more detailed notebooks demonstrating the use of this library, many of which are borrowed from the mojap-aws-tools-demo repo.

Read an SQL Athena query into a pandas dataframe

import pydbtools as pydb
df = pydb.read_sql_query("SELECT * from a_database.table LIMIT 10")

Run a query in Athena

response = pydb.start_query_execution_and_wait("CREATE DATABASE IF NOT EXISTS my_test_database")

Create a temporary table to do further separate SQL queries on later

pydb.create_temp_table("SELECT a_col, count(*) as n FROM a_database.table GROUP BY a_col", table_name="temp_table_1")
df = pydb.read_sql_query("SELECT * FROM __temp__.temp_table_1 WHERE n < 10")

pydb.dataframe_to_temp_table(my_dataframe, "my_table")
df = pydb.read_sql_query("select * from __temp__.my_table where year = 2022")

Introduction

This package is a wrapper for awswrangler that which presets/defines some of the input parameters to the athena module functions to align with our platform setup. See the awswrangler API reference documentation for Athena to see what functions you can call from pydbtools.

The function parameters that are locked down / altered by pydbtools are:

  • boto3_session: This is auto generated by pydbtools (in order to grab the user credentials from the sts client - this is needed for the R version of this package which calls this package under the hood. In short forcing refreshed credentials are needed in R as boto3 credentials timeout and do not refresh when using reticulate, though this does not apply to the latest version of the platform currently being rolled out.)
  • s3_output: The S3 path where database queries are written to. This is defined by pydbtools based on the IAM user/role calling the query (ensures that each role can only read/write to a S3 path only they can access).
  • database: Will either be set to None or __temp__ depending on other user parameters (if ctas_approach=True). __temp__ is an alias to an autogenerated temp database name which is generated from pydbtools again based on the IAM user/role. References to this temporary database can be referenced by the keyword __temp__ in SQL queries see additional functionality to awswrangler section.
  • sql: We allows reference to the database name __temp__ which is an alias to a user specific temporary database. When a function call has an SQL parameter the SQL is checked with an SQL parser and then any reference to __temp__ as a database is replaced with the actual database name which is autogenerated. This replacement only occurs for SELECT queries.
  • pyarrow_additional_kwargs: This is set to {"coerce_int96_timestamp_unit": "ms", "timestamp_as_object": True} by default. Doing this solves this awswrangler issue)

Additional Functionality

As well as acting as a wrapper function for awswrangler this package also allows you to do the following:

Run query and wait for a response

This function essentially calls two functions from awswrangler.athena. First start_query_execution followed by wait_query.

import pydbtools as pydb

response = pydb.start_query_execution_and_wait("SELECT * from a_database.table LIMIT 10")

Create Temporary Tables

You can use the create_temp_table function to write SQL to create a store a temporary table that sits in your __temp__ database.

import pydbtools as pydb

pydb.create_temp_table("SELECT * from a_database.table LIMIT 10", table_name="temp_table_1")
df = pydb.read_sql_query("SELECT * from __temp__.temp_table_1")
df.head()

See the example notebook for a more detailed example.

Create databases and tables

import pydbtools as pydb
import pandas as pd

pydb.create_database("my_db")
pydb.file_to_table(
    "local_file_path/data.csv", 
    database="my_db",
    table="my_table",
    location="s3://my_s3_location/my_table"
)
pydb.dataframe_to_table(
    my_dataframe, 
    database="my_db",
    table="my_other_table",
    location="s3://my_s3_location/my_other_table"
)
pydb.create_table(
    "select * from my_db.my_other_table where month = 'March'",
    database="my_db",
    table="my_march_table",
    location="s3://my_s3_location/my_other_table"
)

See the notebook on MoJAP tools for more details.

Run SQL from a string of statements or a file

It wil often be more convenient to write your SQL in an editor with language support rather than as a Python string. You can create temporary tables within SQL using the syntax below.

import pydbtools as pydb

sql = """
create temp table A as (
    select * from database.table1
    where year = 2021
);

create temp table B as (
    select * from database.table2
    where amount > 10
);

select * from __temp__.A
left join __temp__.B
on A.id = B.id;
"""

with open("queries.sql", "w") as f:
    f.write(sql)
    
with open("queries.sql", "r") as f:
    df = pydb.read_sql_queries(f.read())

Multiple SELECT queries can be returned as a generator of dataframes using read_sql_queries_gen.

See the notebook on creating temporary tables with SQL and the notebook on database administration with SQL for more detailed examples.

Additionally you can use Jinja templating to inject arguments into your SQL.

sql_template = """
SELECT *
FROM {{ db_name }}.{{ table }}
"""
sql = pydb.render_sql_template(sql_template, {"db_name": db_name, "table": "department"})
pydb.read_sql_query(sql)

with open("tempfile.sql", "w") as f:
    f.write("SELECT * FROM {{ db_name }}.{{ table_name }}")
sql = pydb.get_sql_from_file("tempfile.sql", jinja_args={"db_name": db_name, "table_name": "department"})
pydb.read_sql_query(sql)
"""

See the notebook on SQL templating for more details.

Delete databases, tables and partitions together with the data on S3

import pydbtools as pydb

pydb.delete_partitions_and_data(database='my_database', table='my_table', expression='year = 2020 or year = 2021')
pydb.delete_table_and_data(database='my_database', table='my_table')
pydb.delete_database('my_database')

# These can be used for temporary databases and tables.
pydb.delete_table_and_data(database='__temp__', table='my_temp_table')

For more details see the notebook on deletions.

Usage / Examples

Simple

import pydbtools as pydb

# Run a query using pydbtools
response = pydb.start_query_execution_and_wait("CREATE DATABASE IF NOT EXISTS my_test_database")

# Read data from an athena query directly into pandas
pydb.read_sql("SELECT * from a_database.table LIMIT 10")

# Create a temp table to do further seperate SQL queries later on
pydb.create_temp_table("SELECT a_col, count(*) as n FROM a_database.table GROUP BY a_col", table_name="temp_table_1")
df = pydb.read_sql_query("SELECT * FROM __temp__.temp_table_1 WHERE n < 10")

More advanced usage

Get the actual name for your temp database, create your temp db then delete it using awswrangler (note: awswrangler will raise an error if the database does not exist)

import awswrangler as wr
import pydbtools as pydb

user_id, out_path = pydb.get_user_id_and_table_dir()
temp_db_name = pydb.get_database_name_from_userid(user_id)
print(temp_db_name)
pydb.create_temp_table()
print(wr.catalog.delete_database(name=temp_db_name))

DEPRECATED

Functions

The functions:

  • pydbtools.get_athena_query_response
  • pydbtools.read_sql

Are now deprecated and calls to these functions will raise an warning. They have been replaced by pydbtools.start_query_execution_and_wait and pydbtools.read_sql_query.

Notes:

  • Amazon Athena using a flavour of SQL called presto docs can be found here
  • To query a date column in Athena you need to specify that your value is a date e.g. SELECT * FROM db.table WHERE date_col > date '2018-12-31'
  • To query a datetime or timestamp column in Athena you need to specify that your value is a timestamp e.g. SELECT * FROM db.table WHERE datetime_col > timestamp '2018-12-31 23:59:59'
  • Note dates and datetimes formatting used above. See more specifics around date and datetimes here
  • To specify a string in the sql query always use '' not "". Using ""'s means that you are referencing a database, table or col, etc.

See changelog for release changes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydbtools-5.5.6.tar.gz (15.0 kB view details)

Uploaded Source

Built Distribution

pydbtools-5.5.6-py3-none-any.whl (13.9 kB view details)

Uploaded Python 3

File details

Details for the file pydbtools-5.5.6.tar.gz.

File metadata

  • Download URL: pydbtools-5.5.6.tar.gz
  • Upload date:
  • Size: 15.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.9.16 Linux/5.15.0-1036-azure

File hashes

Hashes for pydbtools-5.5.6.tar.gz
Algorithm Hash digest
SHA256 5872e5a9079b58f2720a8b149a7b06c25e1bf0c01a5fee05dd71fb7e60d4bf96
MD5 e15a2ec58e368637478f1017db316c74
BLAKE2b-256 81720dfafd136d18669027c8943adaa791a72834cbdea5a337e3638ebd9f5e6d

See more details on using hashes here.

File details

Details for the file pydbtools-5.5.6-py3-none-any.whl.

File metadata

  • Download URL: pydbtools-5.5.6-py3-none-any.whl
  • Upload date:
  • Size: 13.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.9.16 Linux/5.15.0-1036-azure

File hashes

Hashes for pydbtools-5.5.6-py3-none-any.whl
Algorithm Hash digest
SHA256 95e61fdd8e50eb0128470fe8c138f06d0e05fe8042b94390ff5689756d546513
MD5 9fdd35e84afd9ba16fd848133967a146
BLAKE2b-256 58a5f62ace1cfa6c558b5a11a647e41e7763bec0d3152885395e0b0c6c65c8c5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page