Skip to main content

Differential Evolution in Python

Project description

Global optimization using differential evolution in Python [Storn97].

Installation

git clone https://github.com/hpparvi/PyDE.git
cd PyDE
python setup.py install [--user]

Basic usage

Import the class from the package

from pyde.de import DiffEvol

Create a DiffEvol instance

de = DiffEvol(minfun, bounds, npop)

where minfun is the function to be optimized, bounds is an initialization array, and npop is the size of the parameter vector population.

Now, you can run the optimizer ngen generations:

res = de.optimize(ngen=100)

or run the optimizer as a generator:

for res in de(ngen=100):
    do something

Usage with emcee

The PyDE parameter vector population can be used to initialize the affine-invariant MCMC sampler emcee when a simple point estimate of the function minimum (or maximum) is not sufficient:

de = DiffEvol(lnpost, bounds, npop, maximize=True)
de.optimize(ngen)

sampler = emcee.EnsembleSampler(npop, ndim, lnpost)
sampler.run_mcmc(de.population, 1000)

References

[Storn97]

Storn, R., Price, K., Journal of Global Optimization 11: 341–359, 1997

API

pyde.de.DiffEvol (minfun, bounds, npop, F=0.5, C=0.5, seed=0, maximize=False)

Parameters

minfun:

Function to be minimized.

bounds:

Parameter space bounds as [npar,2] array.

npop:

Size of the parameter vector population.

F:

Difference amplification factor. Values between 0.5-0.8 are good in most cases.

C:

Cross-over probability. Use 0.9 to test for fast convergence, and smaller values (~0.1) for a more elaborate search.

seed:

Random seed.

maximize:

An optional switch telling whether we want maximize or minimize the function. Defaults to minimization.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyDE-1.0.1.tar.gz (2.6 kB view details)

Uploaded Source

File details

Details for the file PyDE-1.0.1.tar.gz.

File metadata

  • Download URL: PyDE-1.0.1.tar.gz
  • Upload date:
  • Size: 2.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for PyDE-1.0.1.tar.gz
Algorithm Hash digest
SHA256 45a56ffa91fb3dcdf3df9cf26f9ec681e6e0401f1dcf137638b700b0822d7bfd
MD5 753a2c51755406987a1ffd677eb4d29c
BLAKE2b-256 7fe12d1467ad0dea7340fb4d3441e9b47c23f5860b2ceb57465239073e04ae19

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page