Skip to main content

A Python Package for Deep Graph Networks

Project description

PyDGN: a research library for Deep Graph Networks

License Documentation Status Python Package Downloads Code style: black Interrogate Coverage DOI

Documentation

This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitting, loading and common experimental settings. It also handles both model selection and risk assessment procedures, by trying many different configurations in parallel (CPU or GPU).

Citing this work

If you used this library for your project, please consider citing us:

@article{pydgn,
  author = {Errica, Federico and Bacciu, Davide and Micheli, Alessio},
  doi = {10.21105/joss.05713},
  journal = {Journal of Open Source Software},
  month = oct,
  number = {90},
  pages = {5713},
  title = {{PyDGN: a Python Library for Flexible and Reproducible Research on Deep Learning for Graphs}},
  url = {https://joss.theoj.org/papers/10.21105/joss.05713},
  volume = {8},
  year = {2023}
}

Installation:

Automated tests passing on Windows, Linux, and MacOS. Requires at least Python 3.8. Simply run

pip install pydgn

Quickstart:

Build dataset and data splits

pydgn-dataset --config-file examples/DATA_CONFIGS/config_NCI1.yml

Train

pydgn-train  --config-file examples/MODEL_CONFIGS/config_SupToyDGN.yml 

And we are up and running!

To debug your code you can add --debug to the command above, but the "GUI" will be disabled.

To stop the computation, use CTRL-C to send a SIGINT signal, and consider using the command ray stop to stop all Ray processes. Warning: ray stop stops all ray processes you have launched, including those of other experiments in progress, if any.

Using the Trained Models

It's very easy to load the model from the experiments (see also the Tutorial):

from pydgn.evaluation.util import *

config = retrieve_best_configuration('RESULTS/supervised_grid_search_toy_NCI1/MODEL_ASSESSMENT/OUTER_FOLD_1/MODEL_SELECTION/')
splits_filepath = 'examples/DATA_SPLITS/CHEMICAL/NCI1/NCI1_outer10_inner1.splits'
device = 'cpu'

# instantiate dataset
dataset = instantiate_dataset_from_config(config)

# instantiate model
model = instantiate_model_from_config(config, dataset, config_type="supervised_config")

# load model's checkpoint, assuming the best configuration has been loaded
checkpoint_location = 'RESULTS/supervised_grid_search_toy_NCI1/MODEL_ASSESSMENT/OUTER_FOLD_1/final_run1/best_checkpoint.pth'
load_checkpoint(checkpoint_location, model, device=device)

# you can now call the forward method of your model
y, embeddings = model(dataset[0])

Projects using PyDGN

Data Splits

We provide the data splits taken from

Errica Federico, Podda Marco, Bacciu Davide, Micheli Alessio: A Fair Comparison of Graph Neural Networks for Graph Classification. 8th International Conference on Learning Representations (ICLR 2020). Code

in the examples/DATA_SPLITS folder.

License:

PyDGN >= 1.0.0 is BSD 3-Clause licensed, as written in the LICENSE file.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydgn-1.5.5.tar.gz (79.9 kB view details)

Uploaded Source

Built Distribution

pydgn-1.5.5-py3-none-any.whl (94.5 kB view details)

Uploaded Python 3

File details

Details for the file pydgn-1.5.5.tar.gz.

File metadata

  • Download URL: pydgn-1.5.5.tar.gz
  • Upload date:
  • Size: 79.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for pydgn-1.5.5.tar.gz
Algorithm Hash digest
SHA256 f2d75fbed62e9677cfb042cdfb764993dbd42f4a60876a5f394b7a23871ca136
MD5 9e781b547f2ea5d0bcb0afdb48f149e1
BLAKE2b-256 471b78014c24cabcbe770922c82e205d8b86d7752c5bc29e6da80b09de1bb01d

See more details on using hashes here.

Provenance

File details

Details for the file pydgn-1.5.5-py3-none-any.whl.

File metadata

  • Download URL: pydgn-1.5.5-py3-none-any.whl
  • Upload date:
  • Size: 94.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for pydgn-1.5.5-py3-none-any.whl
Algorithm Hash digest
SHA256 b0e157c152ddf545a0733acd2db1eee82c45fef1fa6e59d757c33c8c2dec0056
MD5 81abf36dd6526e67d13bac5e2e278074
BLAKE2b-256 4ab4963fb284c71170e0e739b6bfd04064acfc19535d2707cb95c2509cc9abd8

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page