Skip to main content

A Python Package for Deep Graph Networks

Project description

PyDGN: a research library for Deep Graph Networks

License Documentation Status Python Package Downloads Code style: black Interrogate Coverage DOI

Documentation

This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitting, loading and common experimental settings. It also handles both model selection and risk assessment procedures, by trying many different configurations in parallel (CPU or GPU).

Citing this work

If you used this library for your project, please consider citing us:

@article{pydgn,
  author = {Errica, Federico and Bacciu, Davide and Micheli, Alessio},
  doi = {10.21105/joss.05713},
  journal = {Journal of Open Source Software},
  month = oct,
  number = {90},
  pages = {5713},
  title = {{PyDGN: a Python Library for Flexible and Reproducible Research on Deep Learning for Graphs}},
  url = {https://joss.theoj.org/papers/10.21105/joss.05713},
  volume = {8},
  year = {2023}
}

Installation:

Automated tests passing on Windows, Linux, and MacOS. Requires at least Python 3.8. Simply run

pip install pydgn

Quickstart:

Build dataset and data splits

pydgn-dataset --config-file examples/DATA_CONFIGS/config_NCI1.yml

Train

pydgn-train  --config-file examples/MODEL_CONFIGS/config_SupToyDGN.yml 

And we are up and running!

To debug your code you can add --debug to the command above, but the "GUI" will be disabled.

To stop the computation, use CTRL-C to send a SIGINT signal, and consider using the command ray stop to stop all Ray processes. Warning: ray stop stops all ray processes you have launched, including those of other experiments in progress, if any.

Using the Trained Models

It's very easy to load the model from the experiments (see also the Tutorial):

from pydgn.evaluation.util import *

config = retrieve_best_configuration('RESULTS/supervised_grid_search_toy_NCI1/MODEL_ASSESSMENT/OUTER_FOLD_1/MODEL_SELECTION/')
splits_filepath = 'examples/DATA_SPLITS/CHEMICAL/NCI1/NCI1_outer10_inner1.splits'
device = 'cpu'

# instantiate dataset
dataset = instantiate_dataset_from_config(config)

# instantiate model
model = instantiate_model_from_config(config, dataset, config_type="supervised_config")

# load model's checkpoint, assuming the best configuration has been loaded
checkpoint_location = 'RESULTS/supervised_grid_search_toy_NCI1/MODEL_ASSESSMENT/OUTER_FOLD_1/final_run1/best_checkpoint.pth'
load_checkpoint(checkpoint_location, model, device=device)

# you can now call the forward method of your model
y, embeddings = model(dataset[0])

Projects using PyDGN

Data Splits

We provide the data splits taken from

Errica Federico, Podda Marco, Bacciu Davide, Micheli Alessio: A Fair Comparison of Graph Neural Networks for Graph Classification. 8th International Conference on Learning Representations (ICLR 2020). Code

in the examples/DATA_SPLITS folder.

License:

PyDGN >= 1.0.0 is BSD 3-Clause licensed, as written in the LICENSE file.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydgn-1.5.8.tar.gz (80.3 kB view details)

Uploaded Source

Built Distribution

pydgn-1.5.8-py3-none-any.whl (95.0 kB view details)

Uploaded Python 3

File details

Details for the file pydgn-1.5.8.tar.gz.

File metadata

  • Download URL: pydgn-1.5.8.tar.gz
  • Upload date:
  • Size: 80.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for pydgn-1.5.8.tar.gz
Algorithm Hash digest
SHA256 f68dd1a2154c9c0814fc123768772dbb4b6d5ce83e8ba0a2e696a31f3534fb2f
MD5 1c5af406f7cf05ffb59b503e61f37487
BLAKE2b-256 123cb22f5f8663e8b91f438f55924e66d11086f2c0ed3ba73f4f4001684da26e

See more details on using hashes here.

Provenance

File details

Details for the file pydgn-1.5.8-py3-none-any.whl.

File metadata

  • Download URL: pydgn-1.5.8-py3-none-any.whl
  • Upload date:
  • Size: 95.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for pydgn-1.5.8-py3-none-any.whl
Algorithm Hash digest
SHA256 bcafb384486eb0a7145933423ff2dc3b4a78718f737ec5728deec269734d1bec
MD5 b03e07c07f9c108d49fd5b7737bbb7a2
BLAKE2b-256 f8f594b45c1429bee7aff5a117d0ca0ab7fd570a1057a8599156803ce4b6f7f2

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page