Skip to main content

Dgraph to Python object mapper

Project description

IMPORTANT NOTICE: I am still working on this project. Slowly, but I hope that it should be releasable by mid-2019.

PyDiggy

Dgraph to Python object mapper

  • Free software: MIT license

Note

Python 3.7 only. Sorry.

EXAMPLE

# ./examples/__init__

from .basic import *  # noqa


# ./examples/basic.py

from __future__ import annotations


from pydiggy import Node
from typing import List


class Region(Node):
    area: int
    population: int
    name: str
    borders: List[Region]

CLI

Point the CLI utility at an existing module to generate a Dgraph schema.

$ python3 -m pydiggy generate examples

Generating schema for: examples

Nodes found: (1)
    - Region

Your schema:
~~~~~~~~

Region: bool @index(bool) .
_type: string .
area: int .
borders: uid .
name: string .
population: int .

~~~~~~~~

GENERATE MUTATIONS

from pydiggy import generate_mutation, Facets

por = Region(uid=0x11, name="Portugal")
spa = Region(uid=0x12, name="Spain")
gas = Region(uid=0x13, name="Gascony")
mar = Region(uid=0x14, name="Marseilles")

por.borders = [spa]
spa.borders = [por, gas, mar]
gas.borders = [Facets(spa, foo='bar', hello='world'), mar]
mar.borders = [spa, gas]

por.stage()
spa.stage()
gas.stage()
mar.stage()

print(generate_mutation())

The result:

{
    set {
        <0x11> <Region> "true" .
        <0x11> <_type> "Region" .
        <0x11> <name> "Portugal" .
        <0x11> <borders> <0x12> .
        <0x12> <Region> "true" .
        <0x12> <_type> "Region" .
        <0x12> <name> "Spain" .
        <0x12> <borders> <0x11> .
        <0x12> <borders> <0x13> .
        <0x12> <borders> <0x14> .
        <0x13> <Region> "true" .
        <0x13> <_type> "Region" .
        <0x13> <name> "Gascony" .
        <0x13> <borders> <0x12> (foo="bar", hello="world") .
        <0x13> <borders> <0x14> .
        <0x14> <Region> "true" .
        <0x14> <_type> "Region" .
        <0x14> <name> "Marseilles" .
        <0x14> <borders> <0x12> .
        <0x14> <borders> <0x13> .
    }
}

HYDATE FROM JSON TO PYTHON OBJECTS

Given some response from Dgraph:

{
    "data": {
        "allRegions": [
            {
                "uid": "0x11",
                "_type": "Region",
                "name": "Portugal",
                "borders": [
                    {
                        "uid": "0x12",
                        "_type": "Region",
                        "name": "Spain"
                    }
                ]
            },
            {
                "uid": "0x12",
                "_type": "Region",
                "name": "Spain",
                "borders": [
                    {
                        "uid": "0x11",
                        "_type": "Region",
                        "name": "Portugal"
                    },
                    {
                        "uid": "0x13",
                        "_type": "Region",
                        "name": "Gascony"
                    },
                    {
                        "uid": "0x14",
                        "_type": "Region",
                        "name": "Marseilles"
                    }
                ]
            },
            {
                "uid": "0x13",
                "_type": "Region",
                "name": "Gascony",
                "borders": [
                    {
                        "uid": "0x12",
                        "_type": "Region",
                        "name": "Spain",
                        "borders|foo": "bar",
                        "borders|hello": "world"
                    },
                    {
                        "uid": "0x14",
                        "_type": "Region",
                        "name": "Marseilles"
                    }
                ]
            },
            {
                "uid": "0x14",
                "_type": "Region",
                "name": "Marseilles",
                "borders": [
                    {
                        "uid": "0x12",
                        "_type": "Region",
                        "name": "Spain"
                    },
                    {
                        "uid": "0x13",
                        "_type": "Region",
                        "name": "Gascony"
                    }
                ]
            }
        ]
    },
    "extensions": {
        "server_latency": {
            "parsing_ns": 23727,
            "processing_ns": 2000535,
            "encoding_ns": 7803450
        },
        "txn": {
            "start_ts": 117,
            "lin_read": {
                "ids": {
                    "1": 49
                }
            }
        }
    }
}

We can turn it into some Python objects:

>>> data = hydrate(retrieved_data)

{'allRegions': [<Region:17>, <Region:18>, <Region:19>, <Region:20>]}

History

0.1.0 (2018-07-31)

  • First release on PyPI.

Project details


Release history Release notifications

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pydiggy, version 0.1.0
Filename, size File type Python version Upload date Hashes
Filename, size pydiggy-0.1.0.tar.gz (22.8 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page