Skip to main content

No project description provided

Project description

PyPI Python Downloads GitHub Workflow Status GitHub codecov

Dissaggregation under Generalized Proportionality Assumptions

This package disaggregates an estimated count observation into buckets based on the assumption that the rate (in a suitably transformed space) is proportional to some baseline rate.

The most basic functionality is to perform disaggregation under the rate multiplicative model that is currently in use.

The setup is as follows:

Let $D$ be an aggregated measurement across groups $1,\ldots,k$, where the population of each is $p_i,\ldots,p_k$. Let $f_1,\ldots,f_k$ be the baseline pattern of the rates across groups, which could have potentially been estimated on a larger dataset or a population in which have higher quality data on. Using this data, we generate estimates for $D_i$, the number of events in group $g_i$ and $\hat{f_{i}}$, the rate in each group in the population of interest by combining $D$ with $f_1,...,f_k$ to make the estimates self consistent.

Mathematically, in the simpler rate multiplicative model, we find $\beta$ such that

$$D = \sum_{i=1}^{k}\hat{f}_i \cdot p_i $$

Where

$$\hat{f_i} = T^{-1}(\beta + T(f_i)) $$

This yields the estimates for the per-group event count,

$$D_i = \hat f_i \cdot p_i $$

For the current models in use, T is just a logarithm, and this assumes that each rate is some constant muliplied by the overall rate pattern level. Allowing a more general transformation T, such as a log-odds transformation, assumes multiplicativity in the associated odds, rather than the rate, and can produce better estimates statistically (potentially being a more realistic assumption in some cases) and practically, restricting the estimated rates to lie within a reasonable interval.

Current Package Capabilities and Models

Currently, the multiplicative-in-rate model RateMultiplicativeModel with $T(x)=\log(x)$ and the Log Modified Odds model LMOModel(m) with $T(x)=\log(\frac{x}{1-x^{m}})$ are implemented. Note that the LMOModel with m=1 gives a multiplicative in odds model.

A useful (but slightly wrong) analogy is that the multiplicative-in-rate is to the multiplicative-in-odds model as ordinary least squares is to logistic regression in terms of the relationship between covariates and output (not in terms of anything like the likelihood)

Increasing m in the model LMOModel(m) gives results that are more similar to the multiplicative-in-rate model currently in use, while preserving the property that rate estimates are bounded by 1.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydisagg-0.6.0.tar.gz (29.5 kB view details)

Uploaded Source

Built Distribution

pydisagg-0.6.0-py3-none-any.whl (27.1 kB view details)

Uploaded Python 3

File details

Details for the file pydisagg-0.6.0.tar.gz.

File metadata

  • Download URL: pydisagg-0.6.0.tar.gz
  • Upload date:
  • Size: 29.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pydisagg-0.6.0.tar.gz
Algorithm Hash digest
SHA256 91af077c736e7cd189d235c998c20308070285ea5534c6c6c47f9d96e01c049f
MD5 9d6b44d260768cf86dbb65a1828a9d34
BLAKE2b-256 1a3650b9247033d1fa4981260c4df455aec28e8af95a2cf190ecef69226b5d7a

See more details on using hashes here.

File details

Details for the file pydisagg-0.6.0-py3-none-any.whl.

File metadata

  • Download URL: pydisagg-0.6.0-py3-none-any.whl
  • Upload date:
  • Size: 27.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pydisagg-0.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c671e96ee90e5f41c241d8dbec1d66f931e7921e7061e01148ebd95f6b749de2
MD5 b548f8cf3bf116686a1d81459762cfcf
BLAKE2b-256 d6d76921294e809f5ce5e84f423d7dcfe1517bc9f4be93b982ce5246a6d7bf01

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page