A python package for sampling from determinantal point processes
Project description
=====
pyDPP
=====
A python package for sampling from determinantal point processes. Below are instances of sampling from a bicluster and from a random set of points using pyDPP. Refer to examples and references for more information.
.. raw:: html
<img src="https://raw.githubusercontent.com/satwik77/pyDPP/master/example/dpp_selection_k12.png?token=AKhAbS05A3CBgKfXR9P7i4adhlM7Q-whks5b0bhYwA%3D%3D" height="220px">
Usage
-----
Usage example:
::
>>> from pydpp.dpp import DPP
>>> import numpy as np
>>> X = np.random.random((10,10))
>>> dpp = DPP(X)
>>> dpp.compute_kernel(kernel_type = 'rbf', sigma= 0.4) # use 'cos-sim' for cosine similarity
>>> samples = dpp.samples() # samples := [1,7,2,5]
>>> ksamlpes = dpp.sample_k(3) # ksamples := [5,8,0]
Installation
------------
To get the project's source code, clone the github repository:
::
$ git clone https://github.com/satwik77/pyDPP.git
$ cd pyDPP
Create a virtual environment and activate it. [optional]
::
$ [sudo] pip install virtualenv
$ virtualenv -p python3 venv
$ source venv/bin/activate
(venv)$
Next, install all the dependencies in the environment.
::
(venv)$ pip install -r requirements.txt
Install the package into the virtual environment.
::
(venv)$ python setup.py install
Requirements
^^^^^^^^^^^^
- Numpy
- Scipy
To run the example jupyter notebook you need install jupyter notebook, sklearn and matplotlib.
Compatibility
^^^^^^^^^^^^^
The package has been test with python 2.7 and python 3.5.2
Reference
^^^^^^^^^^
- Kulesza, A. and Taskar, B., 2011. k-DPPs: Fixed-size determinantal point processes. In Proceedings of the 28th International Conference on Machine Learning (ICML-11) (pp. 1193-1200). [`paper <https://homes.cs.washington.edu/~taskar/pubs/kdpps_icml11.pdf>`__]
- Kulesza, A. and Taskar, B., 2012. Determinantal point processes for machine learning. Foundations and Trends® in Machine Learning, 5(2–3), pp.123-286. [`paper <http://www.alexkulesza.com/pubs/dpps_fnt12.pdf>`__]
pyDPP
=====
A python package for sampling from determinantal point processes. Below are instances of sampling from a bicluster and from a random set of points using pyDPP. Refer to examples and references for more information.
.. raw:: html
<img src="https://raw.githubusercontent.com/satwik77/pyDPP/master/example/dpp_selection_k12.png?token=AKhAbS05A3CBgKfXR9P7i4adhlM7Q-whks5b0bhYwA%3D%3D" height="220px">
Usage
-----
Usage example:
::
>>> from pydpp.dpp import DPP
>>> import numpy as np
>>> X = np.random.random((10,10))
>>> dpp = DPP(X)
>>> dpp.compute_kernel(kernel_type = 'rbf', sigma= 0.4) # use 'cos-sim' for cosine similarity
>>> samples = dpp.samples() # samples := [1,7,2,5]
>>> ksamlpes = dpp.sample_k(3) # ksamples := [5,8,0]
Installation
------------
To get the project's source code, clone the github repository:
::
$ git clone https://github.com/satwik77/pyDPP.git
$ cd pyDPP
Create a virtual environment and activate it. [optional]
::
$ [sudo] pip install virtualenv
$ virtualenv -p python3 venv
$ source venv/bin/activate
(venv)$
Next, install all the dependencies in the environment.
::
(venv)$ pip install -r requirements.txt
Install the package into the virtual environment.
::
(venv)$ python setup.py install
Requirements
^^^^^^^^^^^^
- Numpy
- Scipy
To run the example jupyter notebook you need install jupyter notebook, sklearn and matplotlib.
Compatibility
^^^^^^^^^^^^^
The package has been test with python 2.7 and python 3.5.2
Reference
^^^^^^^^^^
- Kulesza, A. and Taskar, B., 2011. k-DPPs: Fixed-size determinantal point processes. In Proceedings of the 28th International Conference on Machine Learning (ICML-11) (pp. 1193-1200). [`paper <https://homes.cs.washington.edu/~taskar/pubs/kdpps_icml11.pdf>`__]
- Kulesza, A. and Taskar, B., 2012. Determinantal point processes for machine learning. Foundations and Trends® in Machine Learning, 5(2–3), pp.123-286. [`paper <http://www.alexkulesza.com/pubs/dpps_fnt12.pdf>`__]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pydpp-0.2.1.tar.gz
(4.0 kB
view hashes)
Built Distribution
pydpp-0.2.1-py3-none-any.whl
(4.7 kB
view hashes)