Skip to main content

PyDrugLogics: a Python package designed for constructing, optimizing Boolean models and performs in-silico perturbations of the models.

Project description

PyDrugLogics

PyDrugLogics Logo

PyPI version Build Status License: GPL v3 Documentation Status

Overview

PyDrugLogics is a Python package designed for constructing, optimizing Boolean models and performs in-silico perturbations of the models.

Installation

PyDrugLogics can be installed via pip, conda, or directly from the source.

Install PyDrugLogics from PyPI

pip install pydruglogics

Install PyDrugLogics via conda

conda install pydruglogics

This will install the PyDrugLogics package and handle all dependencies automatically.

Install from Source

For the latest development version, you can clone the repository and install directly from the source:

git clone https://github.com/druglogics/pydruglogics.git
cd pydruglogics
pip install .
pip install -r requirements.txt

Documentation

For full documentation, visit the GitHub Documentation.

Quick Start Guide

Here's a simple example to get you started:

from pydruglogics import BooleanModel, ModelOutputs, TrainingData, Perturbation
from pydruglogics.execution.Executor import execute

# Initialize train and predict
model_outputs_dict = {
        "RSK_f": 1.0,
        "MYC": 1.0,
        "TCF7_f": 1.0
    }
model_outputs = ModelOutputs(input_dictionary=model_outputs_dict)

observations = [(["CASP3:0", "CASP8:0","CASP9:0","FOXO_f:0","RSK_f:1","CCND1:1"], 1.0)]
training_data = TrainingData(observations=observations)


drug_data = [['PI', 'PIK3CA', 'inhibits'],
            ['PD', 'MEK_f', 'activates'],
            ['CT','GSK3_f']]
perturbations = Perturbation(drug_data=drug_data)


boolean_model = BooleanModel(file='./ags_cascade_1.0/network.bnet', model_name='test', mutation_type='topology',
                                  attractor_tool='mpbn', attractor_type='trapspaces')

observed_synergy_scores = ["PI-PD", "PI-5Z", "PD-AK", "AK-5Z"]


ga_args = {
        'num_generations': 20,
        'num_parents_mating': 3,
        'mutation_num_genes': 3,
        'fitness_batch_size': 20
}

ev_args = {
        'num_best_solutions': 3,
        'num_of_runs': 30,
        'num_of_cores': 4
}


train_params = {
        'boolean_model': boolean_model,
        'model_outputs': model_outputs,
        'training_data': training_data,
        'ga_args': ga_args,
        'ev_args': ev_args
}

predict_params = {
        'perturbations': perturbations,
        'model_outputs': model_outputs,
        'observed_synergy_scores': observed_synergy_scores,
        'synergy_method': 'bliss'
}

# run train and predict
execute(train_params=train_params, predict_params=predict_params)

For a more detailed tutorial, please visit the documentation.

CoLoMoTo Docker Integration

Note: This section will be updated when Colomoto Docker integration is completed.

Citing PyDrugLogics

If you use PyDrugLogics, please cite the paper:

Flobak, Å., Zobolas, J. et al. (2023): Fine tuning a logical model of cancer cells to predict drug synergies: combining manual curation and automated parameterization. DOI: 10.3389/fsysb.2023.1252961

@Article{druglogics2023,
  title = {Fine tuning a logical model of cancer cells to predict drug synergies: combining manual curation and automated parameterization},
  author = {Flobak, Å., Zobolas, J. and Other Authors},
  journal = {Frontiers},
  year = {2023},
  month = {nov},
  doi = {10.3389/fsysb.2023.1252961},
  url = {https://www.frontiersin.org/journals/systems-biology/articles/10.3389/fsysb.2023.1252961/full},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydruglogics-0.1.0.tar.gz (37.0 kB view details)

Uploaded Source

Built Distribution

pydruglogics-0.1.0-py3-none-any.whl (40.9 kB view details)

Uploaded Python 3

File details

Details for the file pydruglogics-0.1.0.tar.gz.

File metadata

  • Download URL: pydruglogics-0.1.0.tar.gz
  • Upload date:
  • Size: 37.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for pydruglogics-0.1.0.tar.gz
Algorithm Hash digest
SHA256 a388cb02b7352af91dbc47849228a18fede4c88bb9dc3fe6a860fbccfe60b075
MD5 22e70cb6926bff027e675852b4e9fbba
BLAKE2b-256 ddbb22c6e16cb3570fc191cea4a6719c6e4fc939b89e15d447e2d04dc7393be0

See more details on using hashes here.

File details

Details for the file pydruglogics-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: pydruglogics-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 40.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for pydruglogics-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3a3c0034c27cef444abcbb9c69a0a8447da4dd5124eb55b7173ffb39be71f309
MD5 41d3e5b191e7548b9d2761c8ea236278
BLAKE2b-256 8e9d91191fdd80d2b9a98f5490c85de0b5b05228be19c89614c41ca779fe2658

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page