Skip to main content
Help us improve PyPI by participating in user testing. All experience levels needed!

data validation and conversion library

Project description

PyDTO is a data conversion library. It can validate data, that comes from various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at Github repo.

Project details


Release history Release notifications

This version
History Node

0.5.1

History Node

0.4.1

History Node

0.4.0

History Node

0.3.3

History Node

0.3.1

History Node

0.2

History Node

0.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
pydto-0.5.1.tar.gz (17.6 kB) Copy SHA256 hash SHA256 Source None Aug 21, 2015

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page