Skip to main content
This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (pypi.python.org).
Help us improve Python packaging - Donate today!

data validation and conversion library

Project Description

PyDTO is a data conversion library. It can validate data, that comes from various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydtoz import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at various data serialization formats like JSON, YAML, etc. and convert it to native Python datatypes. It can also convert native Python objects to described DTO.

A taste of this library:

>>> from decimal import Decimal
>>> from pydto import Schema, Required, List, Enum
>>> SCHEMA = Schema(List({
...     Required('price'): Decimal,
...     Required('category'): Enum('laptops', 'tablets', 'phones'),
...     Required('quantity'): int,
...     Required('serial'): (str, int)
... }))
>>> result = SCHEMA([
... {'price': '399.99', 'category': 'tablets', 'quantity': '2', 'serial': ['ta', '237']},
... {'price': '899.99', 'category': 'laptops', 'quantity': '1', 'serial': ['ag', '863']},
... {'price': '199.99', 'category': 'phones', 'quantity': '3', 'serial': ['lz', '659']}
])
>>> assert result == [
... {'price': Decimal('399.99'), 'category': 'tablets', 'quantity': 2, 'serial': ['ta', 237]},
... {'price': Decimal('899.99'), 'category': 'laptops', 'quantity': 1, 'serial': ['ag', 863]},
... {'price': Decimal('199.99'), 'category': 'phones', 'quantity': 3, 'serial': ['lz', 659]}
]

Check out documentation for more detailed review at Github repo.

Release History

Release History

This version
History Node

0.5.1

History Node

0.4.1

History Node

0.4.0

History Node

0.3.3

History Node

0.3.1

History Node

0.2

History Node

0.1

Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
pydto-0.5.1.tar.gz (17.6 kB) Copy SHA256 Checksum SHA256 Source Aug 21, 2015

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting