Python library of Dynamic Treatment Regimes
Project description
pydtr
Description
This is a python library to conduct a dynamic treatment regime (DTR), pydtr
.
A DTR is a paradigm that attempts to select optimal treatments adaptively for individual patients.
Pydtr enables you to implement DTR methods easily by using sklearn-based interfaces.
Method | Single binary treatment | Multiple treatments | Multinomial treatment | Continuous treatment | Modeling flexibility | Interpretability |
---|---|---|---|---|---|---|
IqLearnReg (with sklearn) |
:white_check_mark: | :white_check_mark: | :white_check_mark: (with pipeline) |
:white_check_mark: (with arbitrary regression models) |
||
IqLearnReg (with statsmodels) |
:white_check_mark: | :white_check_mark: | :white_check_mark: | limited to OLS | :white_check_mark: (with confidence intervals) |
|
GEstimation | WIP | WIP | WIP | WIP | WIP |
IqLearnReg
means a regression method of iterative q-learning.
When there are categorical independent variables and you use a sklearn model as a regression function, you need to encode the categorical variables before using the model.
We recommend to encode categorical variables by category_encoders
and combine the encoders with the sklearn model by sklearn.pipeline
.
G-estimation, a famous method of DTR, is now unavailable.
Requirements
- python>=3.6
- pandas>=1.1.2
- scikit-learn>=0.23.2
- numpy>=1.19.2
- statsmodels>=0.12.0
Installation
From pypi
pip install pydtr
From source
git clone https://github.com/fullflu/pydtr.git
cd pydtr
python setup.py install
Usage
Iterative Q Learning (IqLearnReg)
You need to import libraries and prepare data.
# import
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
from pydtr.iqlearn.regression import IqLearnReg
# create sample dataframe
n = 10
thres = int(n / 2)
df = pd.DataFrame()
df["L1"] = np.arange(n)
df["A1"] = [0, 1] * int(n / 2)
df["A2"] = [0] * int(n / 2) + [1] * int(n / 2)
df["Y1"] = np.zeros(n)
df["Y2"] = np.zeros(n)
You can use sklearn-based models.
# set model info
model_info = [
{
"model": RandomForestRegressor(),
"action_dict": {"A1": [0, 1]},
"feature": ["L1", "A1"],
"outcome": "Y1"
},
{
"model": RandomForestRegressor(),
"action_dict": {"A2": [0, 1]},
"feature": ["L1", "A1", "Y1", "A2"],
"outcome": "Y2"
}
]
# fit model
dtr_model = IqLearnReg(
n_stages=2,
model_info=model_info
)
dtr_model.fit(df)
# predict optimal atcions
opt_action_stage_1 = dtr_model.predict(df, 0)
opt_action_stage_2 = dtr_model.predict(df, 1)
opt_action_all_stages = dtr_model.predict_all_stages(df)
You can also use statsmodels-based models.
# set model info
model_info = [
{
"model": "p_outcome ~ L1 * A1",
"action_dict": {"A1": [0, 1]},
"feature": ["L1", "A1"],
"outcome": "Y1"
},
{
"model": "p_outcome ~ L1 + A1 + Y1 * A2",
"action_dict": {"A2": [0, 1]},
"feature": ["L1", "A1", "Y1", "A2"],
"outcome": "Y2"
}
]
# fit model
dtr_model = IqLearnReg(
n_stages=2,
model_info=model_info
)
dtr_model.fit(df)
# predict optimal atcions
opt_action_stage_1 = dtr_model.predict(df, 0)
opt_action_stage_2 = dtr_model.predict(df, 1)
opt_action_all_stages = dtr_model.predict_all_stages(df)
Please see examples to get more information.
Authors
Contributors
Please feel free to create issues or to send pull-requests!
If all checkes have passed in pull-requests, I will merge and release them.
License
Structure
├── .circleci
│ ├── config.yml
├── .github
│ ├── CODEOWNERS
├── LICENSE
├── MANIFEST.IN
├── Makefile
├── README.md
├── examples
│ ├── ...several notebooks...
├── setup.cfg
├── setup.py
├── src
│ ├── pydtr
│ │ ├── __init__.py
│ │ └── iqlearn
│ │ ├── __init__.py
│ │ ├── base.py
│ │ └── regression.py
└── tests
├── test_iqlearn_sklearn_predict.py
└── test_iqlearn_sm_predict.py
References
- Chakraborty, B, Moodie, EE. Statistical Methods for Dynamic Treatment Regimes. Springer, New York, 2013.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pydtr-0.0.2.tar.gz
.
File metadata
- Download URL: pydtr-0.0.2.tar.gz
- Upload date:
- Size: 6.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.6.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 63203b3a85e50e8f4a77c3b2a49528669f29af030d9a44e8f119ad050cb94be2 |
|
MD5 | 05f868eed40018538e7dc5d91dc59e6a |
|
BLAKE2b-256 | 6b06c04f7e7117483975a3295dbbd7e7dea1574ab060c84f1f4c18bce546a3fa |
File details
Details for the file pydtr-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: pydtr-0.0.2-py3-none-any.whl
- Upload date:
- Size: 7.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.6.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 71550b82ad888834ca8c2591665e103e04d1a11719b406375797494f763bbf1e |
|
MD5 | 31918ee5f84d0f00063604d0909bf9ba |
|
BLAKE2b-256 | 8dbbcf0e8e193608f2594e82b10ddfb3f25316c4fcf5e100ea8c9bf750f3bb2b |