Dynamic analysis of systems biology models
Project description
PyDyNo
Python Dynamic analysis of Biochemical Networks (PyDyNo) is an open source python library for the analysis of signal execution in network-driven biological processes. PyDyNo supports the analysis of PySB and SBML models.
Installation
From PyPI
> pip install pydyno
Installing the latest unreleased version
> pip install git+git:https://github.com/LoLab-VU/pydyno.git
Installing from source folder
- Download and extract pydyno
- Navigate into the pydyno directory
- Install (Python is necessary for this step):
> python setup.py install
How to use PyDyNo
Import libraries
import pydyno
import numpy as np
from os.path import dirname, join
from IPython.display import Image
from pydyno.examples.double_enzymatic.mm_two_paths_model import model
from pydyno.visualize_simulations import VisualizeSimulations
from pydyno.discretization import PysbDomPath
from pydyno.visualize_discretization import visualization_path
from pysb.simulator import ScipyOdeSimulator
%matplotlib inline
Load the calibrated parameters and simulate the model with 100 different parameter sets
# import calibrated parameters
module_path = dirname(pydyno.__file__)
pars_path = join(module_path, "examples", "double_enzymatic", "calibrated_pars.npy")
pars = np.load(pars_path)
# define time for the simulation and simulate model
tspan = np.linspace(0, 100, 101)
sim = ScipyOdeSimulator(model, tspan=tspan).run(param_values=pars[:100])
Visualize the dynamics of the model
vt = VisualizeSimulations(model, sim, clusters=None)
vt.plot_cluster_dynamics(components=[5])
# This saves the figure in the local folder with the filename comp0_cluster0.png
Obtain the dominant paths for each of the simulations¶
dp = PysbDomPath(model, sim)
signatures, paths = dp.get_path_signatures('s5', 'production', depth=2, dom_om=1)
signatures.sequences.head()
Obtain distance matrix and optimal number of clusters (execution modes)
signatures.dissimilarity_matrix()
signatures.silhouette_score_agglomerative_range(4)
# Select the number of cluster with highest silhouette score
signatures.agglomerative_clustering(2)
# Plot signatures
signatures.plot_sequences()
# File is saved to the local directory with the filename modal.png
paths
{2: [OrderedDict([('s5', [['s3'], ['s4']])]),
OrderedDict([('s3', [['s0', 's1']]), ('s4', [['s0', 's2']])])],
1: [OrderedDict([('s5', [['s4']])]), OrderedDict([('s4', [['s0', 's2']])])],
0: [OrderedDict([('s5', [['s3']])]), OrderedDict([('s3', [['s0', 's1']])])]}
Visualize execution modes
visualization_path(model,
path=paths[0],
target_node='s5',
type_analysis='production',
filename='path_0.png')
# Visualization is saved to local directory wit the filename path0.png
visualization_path(model,
path=paths[1],
target_node='s5',
type_analysis='production',
filename='path_1.png')
# Visualization is saved to local directory wit the filename path1.png
visualization_path(model,
path=paths[2],
target_node='s5',
type_analysis='production',
filename='path_2.png')
# Visualization is saved to local directory wit the filename path2.png
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pydyno-0.1.2.tar.gz
(164.2 kB
view details)
Built Distribution
File details
Details for the file pydyno-0.1.2.tar.gz
.
File metadata
- Download URL: pydyno-0.1.2.tar.gz
- Upload date:
- Size: 164.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.15.0 pkginfo/1.7.0 requests/2.25.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/2.7.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d25eb16237081c8a92bafea1980811a56c201ef2ff29a0f67f7d9f682daa1445 |
|
MD5 | a2e042f1abc3e943e95649460d89f42d |
|
BLAKE2b-256 | 0e683a0f3ad8514b672e83af9f6f5cae6a4af7113df409586c6fd91d890b7969 |
File details
Details for the file pydyno-0.1.2-cp37-cp37m-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: pydyno-0.1.2-cp37-cp37m-macosx_10_9_x86_64.whl
- Upload date:
- Size: 182.6 kB
- Tags: CPython 3.7m, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.15.0 pkginfo/1.7.0 requests/2.25.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/2.7.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b2260ecea5000e14f66b63351c2b3eb968d3db1b67da787b138c7abdc8ff7a42 |
|
MD5 | f24860139d1cf5cf5b9be10075ac9a9a |
|
BLAKE2b-256 | d76fd5144525d1441a6aa2c0b3ad210a596e90259088a678144fa2a3130d866c |