Skip to main content

Process INE's ECH surveys in Python.

Project description

Build status Documentation Status PyPI version Python 3.7

Overview

A simple package that streamlines the download-read-wrangling process needed to analyze the Encuesta Continua de Hogares survey carried out by the Instituto Nacional de Estadística (Uruguay).

Here's what PyECH can do:

  • Download survey compressed files.
  • Unrar, rename and move the SAV (SPSS) file to a specified path.
  • Read surveys from SAV files, keeping variable and value labels.
  • Download and process variable dictionaries.
  • Search through variable dictionaries.
  • Summarize variables.
  • Calculate variable n-tiles.
  • Convert variables to real terms or USD.

PyECH does not attempt to estimate any indicators in particular, or facilitate any kind of modelling, or concatenate surveys from multiple years. Instead, it aims at providing a hassle-free experience with as simple a syntax as possible.

Surprisingly, PyECH covers a lot of what people tend to do with the ECH survey without having to deal with software licensing.

For R users, check out ech.

Installation

pip install pyech

Dependencies

In order to unpack downloaded survey files you will need to have unrar in your system. This should be covered if you have WinRAR or 7zip installed. Otherwise sudo apt-get install unrar or what's appropiate for your system.

Usage

Loading a survey is as simple as using ECH.load, which will download it if it cannot be found at dirpath (by default the current working directory).

from pyech import ECH

survey = ECH()
survey.load(year=2019, weights="pesoano")

Optionally, load accepts from_repo=True, which downloads survey data from the PyECH Github repository (HDFS+JSON). Loading data this way is significantly faster.

ECH.load also downloads the corresponding variable dictionary, which can be easily searched.

survey.search_dictionary("ingreso", ignore_case=True, regex=True)

This will return a pandas DataFrame where every row matches the search term in any of its columns.

Calculating aggregations is as simple as using ECH.summarize.

survey.summarize("ht11", by="dpto", aggfunc="mean", household_level=True)

Which returns a pandas DataFrame with the mean of "ht11" grouped by ECH.splitter and by (both are optional). Cases are weighted by the column defined in ECH.load.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyech-0.1.0.tar.gz (13.5 kB view details)

Uploaded Source

Built Distribution

pyech-0.1.0-py3-none-any.whl (13.2 kB view details)

Uploaded Python 3

File details

Details for the file pyech-0.1.0.tar.gz.

File metadata

  • Download URL: pyech-0.1.0.tar.gz
  • Upload date:
  • Size: 13.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pyech-0.1.0.tar.gz
Algorithm Hash digest
SHA256 c58eaf72601751993692cb21ce697bd3ed75c753aa06ddaca58d613a1d2332be
MD5 a8c32d500143b0c8e5c2362e1d046513
BLAKE2b-256 322524fc4e49f651d77afab7c560e3adca4ae9104f87cd8009ffb4b76aeeeaf0

See more details on using hashes here.

File details

Details for the file pyech-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: pyech-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 13.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pyech-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 496355d39fd1fcc8963ec5613989ab12a33bf36bdef304a6460f04bab1e4660a
MD5 f77b299a42f67222e42f89ea0235e11b
BLAKE2b-256 81b9d098295ae168473bee8573cfcbaaf9d012b68bf0f38ebb5ac7f5275892dd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page