ECIF file format tools for Python.
Project description
ECIF
Extended Crystallographic Information File, which allows you to put multiple crystal structures into the same .ecif file and add additional properties to facilitate various usage scenarios, such as machine learning data. Inspired by the SDF(structure data files) and RDkit PandasTools.
ECIFPandasTools
This Python module provides some tools for handling the conversion between ECIF files and pandas dataframes. ECIF files are a file format used for storing formatted crystal structure information, while pandas dataframes are a data structure used for data analysis.
Installation
You can install the pyecif
module via pip. To do this, you need to run the following command in your terminal:
pip install pyecif
Features
-
WriteEcif(df, out, idName='ID', cifColName='CIF', properties=None)
: Writes a pandas dataframe to an ECIF file. Each row in the dataframe is converted into an ECIF block, each block contains a CIF part and some additional properties. -
LoadEcif(ecif_file, idName='ID', cifColName='CIF')
: Loads data from an ECIF file into a pandas dataframe. Each ECIF block is converted into a row in the dataframe. -
CifBlock
: This is a class for handling ECIF blocks. It provides some methods for setting and getting properties, adding CIF lines, adding CIF from pymatgen structures, getting CIF, getting the entire block, getting pymatgen structures from CIF, adding the entire block, and writing to CIF files.
Usage
First, you need to have a pandas dataframe that contains some pymatgen Structure objects. Then, you can use the WriteEcif
function to write this dataframe to an ECIF file. For example:
from pyecif import WriteEcif
# Assume you have a dataframe named df, which contains a column of Structure objects named 'CIF'
WriteEcif(df, 'output.ecif', cifColName='CIF', properties=df.columns)
Then, you can use the LoadEcif
function to load data from the ECIF file into a new dataframe. For example:
from pyecif import LoadEcif
df = LoadEcif('output.ecif', cifColName='CIF')
Note that both of these functions accept some optional parameters for specifying the names of certain columns in the dataframe, as well as additional properties to be included in the ECIF file.
Below is a snapshot of our data frame (df
). It contains the fields ID, exfoliation energy (exfoliation_en) and crystal structure (CIF).
ID | exfoliation_en | CIF |
---|---|---|
mb-jdft2d-001 | 63.593833 | [[1.49323138 3.32688405 7.26257785] Hf, [3.326... |
mb-jdft2d-002 | 134.86375 | [[1.85068084 4.37698238 6.93015769] As, [-1.63... |
mb-jdft2d-003 | 43.114667 | [[-1.23770919e-16 2.02133251e+00 1.19727954e... |
mb-jdft2d-004 | 240.715488 | [[2.39882726 2.39882726 2.53701553] In, [0.054... |
mb-jdft2d-005 | 67.442833 | [[ -1.50082215 -0.86650009 -19.85028757] Nb, ... |
... | ... | ... |
mb-jdft2d-632 | 26.426545 | [[ -2.38592122 1.37751225 -13.178104 ] Co, ... |
mb-jdft2d-633 | 43.574286 | [[1.92920996 1.92920997 4.57868062] Ca, [1.929... |
mb-jdft2d-634 | 88.808659 | [[4.53578337 0. 3.14900225] Pd, [ 9.07... |
mb-jdft2d-635 | 132.26525 | [[4.41728901 2.2026463 1.81895292] Hg, [6.631... |
mb-jdft2d-636 | 63.564333 | [[ 0.70613488 -1.21109143 1.03195663] Co, [ 2... |
To better understand the contents of the CIF field, we can look at the details of df['CIF'][0]
. This is an example describing the position of the elements Hf, Si and Te in the crystal structure, which is the pymatgen.core.Structure
class:
Structure Summary
Lattice
abc : 3.66730534 3.66730534 27.311209
angles : 90.0 90.0 90.0
volume : 367.31195815130786
A : 3.66730534 0.0 2.245576873063498e-16
B : -2.245576873063498e-16 3.66730534 2.245576873063498e-16
C : 0.0 0.0 27.311209
pbc : True True True
PeriodicSite: Hf0 (Hf) (1.493, 3.327, 7.263) [0.4072, 0.9072, 0.2659]
PeriodicSite: Hf1 (Hf) (3.327, 1.493, 3.049) [0.9072, 0.4072, 0.1116]
PeriodicSite: Si2 (Si) (3.327, 3.327, 5.156) [0.9072, 0.9072, 0.1888]
PeriodicSite: Si3 (Si) (1.493, 1.493, 5.156) [0.4072, 0.4072, 0.1888]
PeriodicSite: Te4 (Te) (3.327, 1.493, 8.659) [0.9072, 0.4072, 0.3171]
PeriodicSite: Te5 (Te) (1.493, 3.327, 1.652) [0.4072, 0.9072, 0.06049]
Matbench
Matbench is a benchmark dataset for materials science. You can easily obtain the ECIF format of the Matbench dataset using the example script scripts/get_matbench_jdft2d.py
.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file pyecif-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: pyecif-0.1.1-py3-none-any.whl
- Upload date:
- Size: 7.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3a01815eb5a804f632016334eb3ac302c2a744dc97813705441201e4996b8895 |
|
MD5 | e16faf53eeb265e245fe858498ac1962 |
|
BLAKE2b-256 | 949915746c36fcf36100e318b186b4db9b74c080f4a1d0111c8de7d1858181b4 |