Python Electronic Design Automation
Project description
Hello all, I haven’t maintained this repository in years. It appears to need some TLC.
PyEDA is a Python library for electronic design automation.
Features
Symbolic Boolean algebra with a selection of function representations:
Logic expressions
Truth tables, with three output states (0, 1, “don’t care”)
Reduced, ordered binary decision diagrams (ROBDDs)
SAT solvers:
Backtracking
Espresso logic minimization
Formal equivalence
Multi-dimensional bit vectors
DIMACS CNF/SAT parsers
Logic expression parser
Download
Bleeding edge code:
$ git clone git://github.com/cjdrake/pyeda.git
For release tarballs and zipfiles, visit PyEDA’s page at the Cheese Shop.
Installation
Latest release version using pip:
$ pip3 install pyeda
Installation from the repository:
$ python3 setup.py install
Note that you will need to have Python headers and libraries in order to compile the C extensions. For MacOS, the standard Python installation should have everything you need. For Linux, you will probably need to install the Python3 “development” package.
For Debian-based systems (eg Ubuntu, Mint):
$ sudo apt-get install python3-dev
For RedHat-based systems (eg RHEL, Centos):
$ sudo yum install python3-devel
For Windows, just grab the binaries from Christoph Gohlke’s excellent pythonlibs page.
Logic Expressions
Invoke your favorite Python terminal, and invoke an interactive pyeda session:
>>> from pyeda.inter import *
Create some Boolean expression variables:
>>> a, b, c, d = map(exprvar, "abcd")
Construct Boolean functions using overloaded Python operators: ~ (NOT), | (OR), ^ (XOR), & (AND), >> (IMPLIES):
>>> f0 = ~a & b | c & ~d >>> f1 = a >> b >>> f2 = ~a & b | a & ~b >>> f3 = ~a & ~b | a & b >>> f4 = ~a & ~b & ~c | a & b & c >>> f5 = a & b | ~a & c
Construct Boolean functions using standard function syntax:
>>> f10 = Or(And(Not(a), b), And(c, Not(d))) >>> f11 = Implies(a, b) >>> f12 = Xor(a, b) >>> f13 = Xnor(a, b) >>> f14 = Equal(a, b, c) >>> f15 = ITE(a, b, c) >>> f16 = Nor(a, b, c) >>> f17 = Nand(a, b, c)
Construct Boolean functions using higher order operators:
>>> OneHot(a, b, c) And(Or(~a, ~b), Or(~a, ~c), Or(~b, ~c), Or(a, b, c)) >>> OneHot0(a, b, c) And(Or(~a, ~b), Or(~a, ~c), Or(~b, ~c)) >>> Majority(a, b, c) Or(And(a, b), And(a, c), And(b, c)) >>> AchillesHeel(a, b, c, d) And(Or(a, b), Or(c, d))
Investigate a function’s properties:
>>> f0.support frozenset({a, b, c, d}) >>> f0.inputs (a, b, c, d) >>> f0.top a >>> f0.degree 4 >>> f0.cardinality 16 >>> f0.depth 2
Convert expressions to negation normal form (NNF), with only OR/AND and literals:
>>> f11.to_nnf() Or(~a, b) >>> f12.to_nnf() Or(And(~a, b), And(a, ~b)) >>> f13.to_nnf() Or(And(~a, ~b), And(a, b)) >>> f14.to_nnf() Or(And(~a, ~b, ~c), And(a, b, c)) >>> f15.to_nnf() Or(And(a, b), And(~a, c)) >>> f16.to_nnf() And(~a, ~b, ~c) >>> f17.to_nnf() Or(~a, ~b, ~c)
Restrict a function’s input variables to fixed values, and perform function composition:
>>> f0.restrict({a: 0, c: 1}) Or(b, ~d) >>> f0.compose({a: c, b: ~d}) Or(And(~c, ~d), And(c, ~d))
Test function formal equivalence:
>>> f2.equivalent(f12) True >>> f4.equivalent(f14) True
Investigate Boolean identities:
# Double complement >>> ~~a a # Idempotence >>> a | a a >>> And(a, a) a # Identity >>> Or(a, 0) a >>> And(a, 1) a # Dominance >>> Or(a, 1) 1 >>> And(a, 0) 0 # Commutativity >>> (a | b).equivalent(b | a) True >>> (a & b).equivalent(b & a) True # Associativity >>> Or(a, Or(b, c)) Or(a, b, c) >>> And(a, And(b, c)) And(a, b, c) # Distributive >>> (a | (b & c)).to_cnf() And(Or(a, b), Or(a, c)) >>> (a & (b | c)).to_dnf() Or(And(a, b), And(a, c)) # De Morgan's >>> Not(a | b).to_nnf() And(~a, ~b) >>> Not(a & b).to_nnf() Or(~a, ~b)
Perform Shannon expansions:
>>> a.expand(b) Or(And(a, ~b), And(a, b)) >>> (a & b).expand([c, d]) Or(And(a, b, ~c, ~d), And(a, b, ~c, d), And(a, b, c, ~d), And(a, b, c, d))
Convert a nested expression to disjunctive normal form:
>>> f = a & (b | (c & d)) >>> f.depth 3 >>> g = f.to_dnf() >>> g Or(And(a, b), And(a, c, d)) >>> g.depth 2 >>> f.equivalent(g) True
Convert between disjunctive and conjunctive normal forms:
>>> f = ~a & ~b & c | ~a & b & ~c | a & ~b & ~c | a & b & c >>> g = f.to_cnf() >>> h = g.to_dnf() >>> g And(Or(a, b, c), Or(a, ~b, ~c), Or(~a, b, ~c), Or(~a, ~b, c)) >>> h Or(And(~a, ~b, c), And(~a, b, ~c), And(a, ~b, ~c), And(a, b, c))
Multi-Dimensional Bit Vectors
Create some four-bit vectors, and use slice operators:
>>> A = exprvars('a', 4) >>> B = exprvars('b', 4) >>> A farray([a[0], a[1], a[2], a[3]]) >>> A[2:] farray([a[2], a[3]]) >>> A[-3:-1] farray([a[1], a[2]])
Perform bitwise operations using Python overloaded operators: ~ (NOT), | (OR), & (AND), ^ (XOR):
>>> ~A farray([~a[0], ~a[1], ~a[2], ~a[3]]) >>> A | B farray([Or(a[0], b[0]), Or(a[1], b[1]), Or(a[2], b[2]), Or(a[3], b[3])]) >>> A & B farray([And(a[0], b[0]), And(a[1], b[1]), And(a[2], b[2]), And(a[3], b[3])]) >>> A ^ B farray([Xor(a[0], b[0]), Xor(a[1], b[1]), Xor(a[2], b[2]), Xor(a[3], b[3])])
Reduce bit vectors using unary OR, AND, XOR:
>>> A.uor() Or(a[0], a[1], a[2], a[3]) >>> A.uand() And(a[0], a[1], a[2], a[3]) >>> A.uxor() Xor(a[0], a[1], a[2], a[3])
Create and test functions that implement non-trivial logic such as arithmetic:
>>> from pyeda.logic.addition import * >>> S, C = ripple_carry_add(A, B) # Note "1110" is LSB first. This says: "7 + 1 = 8". >>> S.vrestrict({A: "1110", B: "1000"}).to_uint() 8
Other Function Representations
Consult the documentation for information about truth tables, and binary decision diagrams. Each function representation has different trade-offs, so always use the right one for the job.
PicoSAT SAT Solver C Extension
PyEDA includes an extension to the industrial-strength PicoSAT SAT solving engine.
Use the satisfy_one method to finding a single satisfying input point:
>>> f = OneHot(a, b, c) >>> f.satisfy_one() {a: 0, b: 0, c: 1}
Use the satisfy_all method to iterate through all satisfying input points:
>>> list(f.satisfy_all()) [{a: 0, b: 0, c: 1}, {a: 0, b: 1, c: 0}, {a: 1, b: 0, c: 0}]
For more interesting examples, see the following documentation chapters:
Espresso Logic Minimization C Extension
PyEDA includes an extension to the famous Espresso library for the minimization of two-level covers of Boolean functions.
Use the espresso_exprs function to minimize multiple expressions:
>>> f1 = Or(~a & ~b & ~c, ~a & ~b & c, a & ~b & c, a & b & c, a & b & ~c) >>> f2 = Or(~a & ~b & c, a & ~b & c) >>> f1m, f2m = espresso_exprs(f1, f2) >>> f1m Or(And(~a, ~b), And(a, b), And(~b, c)) >>> f2m And(~b, c)
Use the espresso_tts function to minimize multiple truth tables:
>>> X = exprvars('x', 4) >>> f1 = truthtable(X, "0000011111------") >>> f2 = truthtable(X, "0001111100------") >>> f1m, f2m = espresso_tts(f1, f2) >>> f1m Or(x[3], And(x[0], x[2]), And(x[1], x[2])) >>> f2m Or(x[2], And(x[0], x[1]))
Execute Unit Test Suite
If you have PyTest installed, run the unit test suite with the following command:
$ make test
If you have Coverage installed, generate a coverage report (including HTML) with the following command:
$ make cover
Perform Static Lint Checks
If you have Pylint installed, perform static lint checks with the following command:
$ make lint
Build the Documentation
If you have Sphinx installed, build the HTML documentation with the following command:
$ make html
Python Versions Supported
PyEDA is developed using Python 3.3+. It is NOT compatible with Python 2.7, or Python 3.2.
Citations
I recently discovered that people actually use this software in the real world. Feel free to send me a pull request if you would like your project listed here as well.
A Model-Based Approach for Reliability Assessment in Component-Based Systems
bunsat, used for the SAT paper Fast DQBF Refutation
Input-Aware Implication Selection Scheme Utilizing ATPG for Efficient Concurrent Error Detection
Generation Methodology for Good-Enough Approximate Modules of ATMR
Effect of FPGA Circuit Implementation on Error Detection Using Logic Implication Checking
Presentations
Video from SciPy 2015
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pyeda-0.29.0.tar.gz
.
File metadata
- Download URL: pyeda-0.29.0.tar.gz
- Upload date:
- Size: 486.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.12.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | efd4d3e548079ca059f44f9babb9bd67b332ec1762897324fcceb8da1d0f5fed |
|
MD5 | cad90581bf89ab6a8a883b32c3eb0599 |
|
BLAKE2b-256 | 8b1fec1e7860b0931c61b7a31ea70a89efe669cfa74539768fb6fa5fbf9cc53f |
File details
Details for the file pyeda-0.29.0-cp312-cp312-win_amd64.whl
.
File metadata
- Download URL: pyeda-0.29.0-cp312-cp312-win_amd64.whl
- Upload date:
- Size: 186.1 kB
- Tags: CPython 3.12, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.12.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 028bd63ab29bf92ce48d576ee2b8256c287e8d54d5e644d48af360ef2bbb0712 |
|
MD5 | c983b4e38220dd3089bd9e732aec2636 |
|
BLAKE2b-256 | 3f7cdb0108f4c0e6e0fc65f3f4f28412dbc8b0d91ebefb615cc7917139279922 |