Skip to main content

Python Electronic Design Automation

Project description

PyEDA is a Python library for electronic design automation.

Read the docs!

https://travis-ci.org/cjdrake/pyeda.png?branch=master

Features

  • Symbolic Boolean algebra with a selection of function representations:

    • Logic expressions

    • Fast, disjunctive/conjunctive normal form logic expressions

    • Reduced, ordered binary decision diagrams (ROBDDs)

    • Truth tables, with three output states (0, 1, “don’t care”)

  • SAT solvers:

    • Backtracking

    • DPLL

  • Formal equivalence

  • Multi-dimensional bit vectors

  • DIMACS CNF/SAT parsers

  • Logic expression parser

Download

Bleeding edge code:

$ git clone git://github.com/cjdrake/pyeda.git

For release tarballs and zipfiles, visit PyEDA’s page at the Cheese Shop.

Installation

Latest released version using setuptools:

$ easy_install pyeda

Latest release version using pip:

$ pip install pyeda

Installation from the repository:

$ python setup.py install

Getting Started With Logic Expressions

Invoke your favorite Python terminal, and invoke an interactive pyeda session:

>>> from pyeda.inter import *

Create some Boolean expression variables:

>>> a, b, c, d = map(exprvar, "abcd")

Construct Boolean functions using overloaded Python operators: - (NOT), + (OR), * (AND), >> (IMPLIES):

>>> f0 = -a * b + c * -d
>>> f1 = a >> b
>>> f2 = -a * b + a * -b
>>> f3 = -a * -b + a * b
>>> f4 = -a * -b * -c + a * b * c
>>> f5 = a * b + -a * c

Construct Boolean functions using standard function syntax:

>>> f10 = Or(And(Not(a), b), And(c, Not(d)))
>>> f11 = Implies(a, b)
>>> f12 = Xor(a, b)
>>> f13 = Xnor(a, b)
>>> f14 = Equal(a, b, c)
>>> f15 = ITE(a, b, c)

Construct Boolean functions using higher order operators:

>>> f20 = Nor(a, b, c)
>>> f21 = Nand(a, b, c)
>>> f22 = OneHot(a, b, c)
>>> f23 = OneHot0(a, b, c)

Investigate a function’s properties:

>>> f0.support
frozenset([a, b, c, d])
>>> f0.inputs
(a, b, c, d)
>>> f0.top
a
>>> f0.degree
4
>>> f0.cardinality
16
>>> f0.depth
2

Factor complex expressions into only OR/AND and literals:

>>> f11.factor()
a' + b
>>> f12.factor()
a' * b + a * b'
>>> f13.factor()
a' * b' + a * b
>>> f14.factor()
a' * b' * c' + a * b * c
>>> f15.factor()
a * b + a' * c

Restrict a function’s input variables to fixed values, and perform function composition:

>>> f0.restrict({a: 0, c: 1})
b + d'
>>> f0.compose({a: c, b: -d})
c' * d' + c * d'

Test function formal equivalence:

>>> f2.equivalent(f12)
True
>>> f4.equivalent(f14)
True

Investigate Boolean identities:

# Law of double complement
>>> --a
a

# Idempotent laws
>>> a + a
a
>>> a * a
a

# Identity laws
>>> a + 0
a
>>> a * 1
a

# Dominance laws
>>> a + 1
1
>>> a * 0
0

# Commutative laws
>>> (a + b).equivalent(b + a)
True
>>> (a * b).equivalent(b * a)
True

# Associative laws
>>> a + (b + c)
a + b + c
>>> a * (b * c)
a * b * c

# Distributive laws
>>> (a + (b * c)).to_cnf()
(a + b) * (a + c)
>>> (a * (b + c)).to_dnf()
a * b + a * c

# De Morgan's laws
>>> Not(a + b).factor()
a' * b'
>>> Not(a * b).factor()
a' + b'

# Absorption laws
>>> (a + (a * b)).absorb()
a
>>> (a * (a + b)).absorb()
a

Perform Shannon expansions:

>>> a.expand(b)
a * b' + a * b
>>> (a * b).expand([c, d])
a * b * c' * d' + a * b * c' * d + a * b * c * d' + a * b * c * d

Convert a nested expression to disjunctive normal form:

>>> f = a * (b + (c * d))
>>> f.depth
3
>>> g = f.to_dnf()
>>> g
a * b + a * c * d
>>> g.depth
2
>>> f.equivalent(g)
True

Convert between disjunctive and conjunctive normal forms:

>>> f = -a * -b * c + -a * b * -c + a * -b * -c + a * b * c
>>> g = f.to_cnf()
>>> h = g.to_dnf()
>>> g
(a + b + c) * (a + b' + c') * (a' + b + c') * (a' + b' + c)
>>> h
a' * b' * c + a' * b * c' + a * b' * c' + a * b * c

Getting Started With Multi-Dimensional Bit Vectors

Create some four-bit vectors, and use slice operators:

>>> A = bitvec('A', 4)
>>> B = bitvec('B', 4)
>>> A
[A[0], A[1], A[2], A[3]]
>>> A[2:]
[A[2], A[3]]
>>> A[-3:-1]
[A[1], A[2]]

Perform bitwise operations using Python overloaded operators: ~ (NOT), | (OR), & (AND), ^ (XOR):

>>> ~A
[A[0]', A[1]', A[2]', A[3]']
>>> A | B
[A[0] + B[0], A[1] + B[1], A[2] + B[2], A[3] + B[3]]
>>> A & B
[A[0] * B[0], A[1] * B[1], A[2] * B[2], A[3] * B[3]]
>>> A ^ B
[Xor(A[0], B[0]), Xor(A[1], B[1]), Xor(A[2], B[2]), Xor(A[3], B[3])]

Reduce bit vectors using unary OR, AND, XOR:

>>> A.uor()
A[0] + A[1] + A[2] + A[3]
>>> A.uand()
A[0] * A[1] * A[2] * A[3]
>>> A.uxor()
Xor(A[0], A[1], A[2], A[3])

Create and test functions that implement non-trivial logic such as arithmetic:

>>> from pyeda.logic.addition import *
>>> S, C = ripple_carry_add(A, B)
# Note "1110" is LSB first. This says: "7 + 1 = 8".
>>> S.vrestrict({A: "1110", B: "1000"}).to_uint()
8

Other Function Representations

Consult the documentation for information on normal form expressions, truth tables, and binary decision diagrams. Each function representation has different trade-offs, so always use the right one for the job.

Execute Unit Test Suite

If you have Nose installed, run the unit test suite with the following command:

$ make test

If you have Coverage installed, generate a coverage report (including HTML) with the following command:

$ make cover

Perform Static Lint Checks

If you have Pylint installed, perform static lint checks with the following command:

$ make lint

Build the Documentation

If you have Sphinx installed, build the HTML documentation with the following command:

$ make html

Python Versions Supported

PyEDA is primarily developed using Python 3.2, but compromises have been made to maintain backwards compatibility with 2.7. We do not guarantee this will always be the case.

Contact the Authors

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

pyeda-0.14.0.zip (39.8 kB view hashes)

Uploaded Source

pyeda-0.14.0.tar.gz (30.1 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page