Skip to main content

library to read/write EDF+/BDF+ files

Project description

Test Coverage Docs Build PyPI Version Conda Version Conda Downloads

What is pyEDFlib

pyEDFlib is a python library to read/write EDF+/BDF+ files based on EDFlib.

EDF means European Data Format and was firstly published Kemp1992. In 2003, an improved version of the file protocol named EDF+ has been published and can be found at Kemp2003.

The EDF/EDF+ format saves all data with 16 Bit. The company BioSemi introduced a version which saves all data with 24 Bit.

The definition of the EDF/EDF+/BDF/BDF+ format can be found under edfplus.info.

This Python toolbox is a fork of the toolbox from Christopher Lee-Messer and uses the EDFlib from Teunis van Beelen. The EDFlib is able to read and write EDF/EDF+/BDF/BDF+ files.

Documentation

Documentation is available online at https://pyedflib.readthedocs.io.

Installation

pyEDFlib can be used with Python >=3.7. It depends on the Numpy package. To use the newest source code from git, you have to download the source code. You need a C compiler and a recent version of Cython. Go then to the source directory and type:

python setup.py build
python setup.py install

There are binary wheels which can be installed by (use pip3 when available):

pip install pyEDFlib

Users of the Anaconda Python distribution can directly obtain pre-built Windows, Intel Linux or macOS / OSX binaries from the conda-forge channel. This can be done via:

conda install -c conda-forge pyedflib

The most recent development version can be found on GitHub at https://github.com/holgern/pyedflib.

The latest release, including source and binary packages for Linux, macOS and Windows, is available for download from the Python Package Index. You can find source releases at the Releases Page.

Highlevel interface

pyEDFlib includes an highlevel interface for easy access to read and write edf files. Additionally functionality as anonymizing, dropping or renaming channels can be found there.

from pyedflib import highlevel

# write an edf file
signals = np.random.rand(5, 256*300)*200 # 5 minutes of random signal
channel_names = ['ch1', 'ch2', 'ch3', 'ch4', 'ch5']
signal_headers = highlevel.make_signal_headers(channel_names, sample_frequency=256)
header = highlevel.make_header(patientname='patient_x', gender='Female')
highlevel.write_edf('edf_file.edf', signals, signal_headers, header)

# read an edf file
signals, signal_headers, header = highlevel.read_edf('edf_file.edf', ch_names=['ch1', 'ch2'])
print(signal_headers[0]['sample_frequency']) # prints 256

# drop a channel from the file or anonymize edf
highlevel.drop_channels('edf_file.edf', to_drop=['ch2', 'ch4'])
highlevel.anonymize_edf('edf_file.edf', new_file='anonymized.edf'
                         to_remove=['patientname', 'birthdate'],
                         new_values=['anonymized', ''])
# check if the two files have the same content
highlevel.compare_edf('edf_file.edf', 'anonymized.edf')
# change polarity of certain channels
highlevel.change_polarity('file.edf', channels=[1,3])
# rename channels within a file
highlevel.rename_channels('file.edf', mapping={'C3-M1':'C3'})

License

pyEDFlib is a free Open Source software released under the BSD 2-clause license.

Releases can be cited via Zenodo.

https://zenodo.org/badge/DOI/10.5281/zenodo.5678481.svg

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyedflib-0.1.38.tar.gz (2.1 MB view details)

Uploaded Source

Built Distributions

pyEDFlib-0.1.38-cp312-cp312-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.12 Windows x86-64

pyEDFlib-0.1.38-cp312-cp312-win32.whl (2.2 MB view details)

Uploaded CPython 3.12 Windows x86

pyEDFlib-0.1.38-cp312-cp312-musllinux_1_2_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

pyEDFlib-0.1.38-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.38-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.38-cp312-cp312-macosx_11_0_arm64.whl (2.2 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyEDFlib-0.1.38-cp312-cp312-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyEDFlib-0.1.38-cp311-cp311-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyEDFlib-0.1.38-cp311-cp311-win32.whl (2.2 MB view details)

Uploaded CPython 3.11 Windows x86

pyEDFlib-0.1.38-cp311-cp311-musllinux_1_2_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

pyEDFlib-0.1.38-cp311-cp311-musllinux_1_2_i686.whl (2.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

pyEDFlib-0.1.38-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.38-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.38-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.38-cp311-cp311-macosx_11_0_arm64.whl (2.2 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyEDFlib-0.1.38-cp311-cp311-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyEDFlib-0.1.38-cp310-cp310-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyEDFlib-0.1.38-cp310-cp310-win32.whl (2.2 MB view details)

Uploaded CPython 3.10 Windows x86

pyEDFlib-0.1.38-cp310-cp310-musllinux_1_2_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

pyEDFlib-0.1.38-cp310-cp310-musllinux_1_2_i686.whl (2.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

pyEDFlib-0.1.38-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.38-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.38-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.38-cp310-cp310-macosx_11_0_arm64.whl (2.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyEDFlib-0.1.38-cp310-cp310-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyEDFlib-0.1.38-cp39-cp39-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyEDFlib-0.1.38-cp39-cp39-win32.whl (2.2 MB view details)

Uploaded CPython 3.9 Windows x86

pyEDFlib-0.1.38-cp39-cp39-musllinux_1_2_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

pyEDFlib-0.1.38-cp39-cp39-musllinux_1_2_i686.whl (2.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

pyEDFlib-0.1.38-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.38-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.38-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.38-cp39-cp39-macosx_11_0_arm64.whl (2.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyEDFlib-0.1.38-cp39-cp39-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyEDFlib-0.1.38-cp38-cp38-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyEDFlib-0.1.38-cp38-cp38-win32.whl (2.2 MB view details)

Uploaded CPython 3.8 Windows x86

pyEDFlib-0.1.38-cp38-cp38-musllinux_1_2_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

pyEDFlib-0.1.38-cp38-cp38-musllinux_1_2_i686.whl (2.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

pyEDFlib-0.1.38-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.38-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.38-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.38-cp38-cp38-macosx_11_0_arm64.whl (2.2 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyEDFlib-0.1.38-cp38-cp38-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyEDFlib-0.1.38-cp37-cp37m-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyEDFlib-0.1.38-cp37-cp37m-win32.whl (2.2 MB view details)

Uploaded CPython 3.7m Windows x86

pyEDFlib-0.1.38-cp37-cp37m-musllinux_1_2_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

pyEDFlib-0.1.38-cp37-cp37m-musllinux_1_2_i686.whl (2.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ i686

pyEDFlib-0.1.38-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.38-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pyEDFlib-0.1.38-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.38-cp37-cp37m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyEDFlib-0.1.38-cp36-cp36m-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

pyEDFlib-0.1.38-cp36-cp36m-win32.whl (2.2 MB view details)

Uploaded CPython 3.6m Windows x86

pyEDFlib-0.1.38-cp36-cp36m-musllinux_1_2_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.2+ x86-64

pyEDFlib-0.1.38-cp36-cp36m-musllinux_1_2_i686.whl (2.6 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.2+ i686

pyEDFlib-0.1.38-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pyEDFlib-0.1.38-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (2.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyEDFlib-0.1.38-cp36-cp36m-macosx_10_9_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pyedflib-0.1.38.tar.gz.

File metadata

  • Download URL: pyedflib-0.1.38.tar.gz
  • Upload date:
  • Size: 2.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for pyedflib-0.1.38.tar.gz
Algorithm Hash digest
SHA256 6a0fe727ea4cf18de63c6ede43a6c2d151f474aba6ebde0c6f9a5cf09711bbdd
MD5 92e57efda4308b01013ab13588f46139
BLAKE2b-256 255f8b63b5cc4f27526ffe99a21fee2531aa877d85d3ca84ec65101623d4c588

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 6a49c6bd5e5ca265fec0f00b60e10516d6b6b6ff3e3d4824fd9390e8a922fe6d
MD5 67d73a7831bf58178c527492a99e3d2e
BLAKE2b-256 895996b153d2bb0e06566a46fba124aeba367a755635938e6c61ff4d9f3a8ac7

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp312-cp312-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.38-cp312-cp312-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for pyEDFlib-0.1.38-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 107825562d03e24b4fdfff9eb6d3eccbe6e4229898b1b683e6cac693b5bcb133
MD5 3656d1bc6977b61a85050c64163f4d8b
BLAKE2b-256 6d0c2700631b5e9551b75d34837fc1b07bce1b49d292cc60a59c0e6e9430442d

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1bd06e28e67e4ecd623c1db32cdd6cb333c81ab0d247ab51a9be4d62784ad056
MD5 287f830030609ac718052caba24558cd
BLAKE2b-256 49e1765b866c9b07c2563a967af16e775955a081885a91c7fa98f6df4b3ae394

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c8464d6b42c240a19c67fbf02e05011bc055c5b702e9021376987822ece31c05
MD5 97da4cf04113c3cf1fa85eb363daa866
BLAKE2b-256 3b27b5052b3fd6746f41965da9fdcee598808f92e9bff2893f40da283023efbd

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b489405e332b875ee253d1a267055d2da2e29a2f38ce7beff891f0bb6edfa615
MD5 988ed62adbd9495e1544691cdf3d2a26
BLAKE2b-256 6949445691095fe7c01906c40a9a66dbe6cd1b926af24ba3cc3852943d8aa454

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9b3f55b8bc712d615a9bbac5d47cbc7a737ee64db19436baaf4769b79a9dcab3
MD5 d540070741f1cffff449ce12abb63d5c
BLAKE2b-256 5f37921524fca6f2e873984f2a612fb73bf680c173e0012380e2cd83b87b73cb

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3f24bd990f79ce0f1896132b74041cf20986975e9cc5aae8238d3dc45351c0e3
MD5 f288e67145b21a3ee6807d1a22e706a7
BLAKE2b-256 819777ed8c043d5a4159f925c538b8732959e630c4f30b1ae3d9836a5f85064d

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4c045c2161c6c683a13826949032c0eeb4116b2285d92436685222d3e861bfd1
MD5 ea57d6511fedcd2f57e6bf2a6804896c
BLAKE2b-256 c921db3a777e23cf160f9dc20f20a4a09b6414698b3df94977b75e4078da942f

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp311-cp311-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.38-cp311-cp311-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for pyEDFlib-0.1.38-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 1581a132d94c0bd5d7bb9cf08446faf41e89b8cb6ee1bd9946cc3c08d870db89
MD5 91234a6aeac10743cf40adaf522e3ff5
BLAKE2b-256 e4129d6559fb9e5c9deeab4e326c07a60f2a8910862e70845b51599404f91bf7

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 af3b12b31d0d8647466f41b9887304c38b45e617b0b25ced7f0a91b739ff0196
MD5 9392ce9ab14246bde862a83cc13f9d2e
BLAKE2b-256 90f114ae1f1ee56a381c509fbe98a0e16fc537ca43362a3a1e8a008451b7e34d

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 89b8100c6e9bf5a94a86ea09d8a69181b30d6f9b3726541630913a562de73672
MD5 26946c376cba531bf730b60c8750fc02
BLAKE2b-256 cfce86a2b0e04773a17e7c662b270199c52b84f92f4ab835a07d059e3ac53e24

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7a44ac4ddf9c75116b3d60955a6ef70c2d31f7028c5b60aad11cb4bc6ea0a82c
MD5 63e51d3f0ae7c3846fc510d8ea125451
BLAKE2b-256 8bece7f651d44bacd8390e23dcd8f2e2e3a49541f2698c1d0ee357eaf882c12d

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 549cb7188235a41ccd9b1f2acbe614739d5ad01d05bb1d28c750205c2a44c4dd
MD5 4fe27701be7796cd4a146613e257bae6
BLAKE2b-256 77394b6294dccbc85aeee9b0a553a046605e6b441c8ed0322aa106d134773ed0

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e4d96733cdf24bf738c9bee2398bff3c566ababe60441a24fb15d4af39939140
MD5 372add9a6e0cd982626e49368568ba3f
BLAKE2b-256 8376135c407661a409ee1db676738aec60e92c8c77d8179e76990e4cbc234c49

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 865fcbb658925b2f971672d8aef6c0482abee340988e75f4d16815aa8ee0a0bf
MD5 ced03d50ca4b78a193d9661ab1e18a7c
BLAKE2b-256 2b5322c30f2049fa2624b86dee9e2625faaeac0233c1417886bcb294467d00be

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3055460e7b8f4bfb5e950ba5032017006654cfbc44ee2c9bd0a1cf966d2f9dde
MD5 b3c487d2770ddc7dcc7a92fc9329185d
BLAKE2b-256 9d2147cc7f282474c361536edf04a974e15149eae959f7e1ae98a02c26c10156

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 99c2f5382def5d3b0a7990c72ae219ccbd404b30a59f6ee08adabc1677e5605a
MD5 a484ad2a3f2b1c7eb7bafaa5172783c0
BLAKE2b-256 64593dacf10d7ee76c3439e49021c3ec9815cde4eed3d8f850e99af45eeaaff1

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.38-cp310-cp310-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for pyEDFlib-0.1.38-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 87cfaab20b67689965af98750b4427b8d5f5832967ad511e28c33a25122000e0
MD5 32bd0310e20ae3a72e21d1361fa623f7
BLAKE2b-256 1960779ee428a285f8efb75b3b5fbeba2eb10c8576fa2a3aa7e7bbf89bc72853

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 47e037bc273f76bd6e7ab6284917a958797db6880933b21f11a23d7f076b250f
MD5 39c65b11e02d60324bba5748c431dc45
BLAKE2b-256 de1011b7c5073c4b2aff1bb83fa4a3ae7e289b82a5170789f401f0c7bcc4f0d5

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 49cd5a8d8a9c0f2e21fe74ca6eca420617383d163f79142d34ff4c790a1faf49
MD5 093741b4705c0ca98142785939cecf49
BLAKE2b-256 0e96e21c0917282d2ad580043a965abe4fa860f6fa3c4695d60b16e9aca4f9a2

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b9ec363d2549351e67046df6319468c1c4ef48120ed1d62c214de40a04a62b2b
MD5 a1baffd1dfcdaef4e7ed2af4368265c7
BLAKE2b-256 742cdb215a1f69f4de0d9a0d87e6f06f4bc80642ab7fe85f11578228c786e185

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3dec3668f247d186b67a43764411f2f5f989968d1e4cce5b5bb50dcb068c7166
MD5 8534251a5979724dc95e38c9b40b57c5
BLAKE2b-256 d3daa8b0d09b86772923ed43f4301a4a757d63addb684abeead1b92abe0d71c0

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a4091585e38ce3a5ff8f5ec9b917fc3deb0787bc122cfd52bf40cf7e61ff10ec
MD5 8f816910247533d2b59c0dcc3fcf4856
BLAKE2b-256 17771819c8f6e98d6cd23bd27f2f837debe2e47372e11710f79d795f673a512a

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2e851a344946752abaf9811a9cb3bc13f0d9cd08725c9871daee4e500babbee7
MD5 099cd3f154054ffeb386ea21e8395683
BLAKE2b-256 1871e0b2f900a26474446e9fc8f90bbe06d6fac620b6ef677cff9c0d3a6dc2ef

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9b8e8b92d697f31c30d30b505e56b518d9f53a8d3372fdc74feeb0388ac8c319
MD5 164a87efeb9544fcadcba47c51ea4c07
BLAKE2b-256 f8fb39eedbdd0466a087e0fdce82ac51b67491d596886f375c05ada79c3c0396

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyEDFlib-0.1.38-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for pyEDFlib-0.1.38-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 05d38a182bef6efdedc9e90c1d4a89ece4ee150b047153b1bc66073ec6289e41
MD5 ab74287c5a50dc553edf2c69ee0073c8
BLAKE2b-256 d2223807949be999fad2f817a6f9d8496763ae557d5790b5f9be9f8c09ee6cc3

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.38-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for pyEDFlib-0.1.38-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 0695960ce011d9efa4c8e36a9ffc05f04144a6104ae32911cf674f805f7b817e
MD5 879240d03752c3153bdceb3142cfc247
BLAKE2b-256 05e4cb03986a895c4f655e5a26b2ca4a9e78b4968a6dd246adc86d7a94dec747

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4f6718a0b7c83e5ca1ad78fd7aecee70df0dfb6b63a354f66effd5d6277b9ecf
MD5 738ca4795ec7e5c53fb90eb13f32cc6a
BLAKE2b-256 69f5259284c8b49dda108ea82fa5ba056a740f367134767268add810864c1de1

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 0b13ad2cb0f6e7628c04164498ac0ee12ae792c0f2a61c479d6093eb8b198488
MD5 ece73291c4d46ffdb40130b638506196
BLAKE2b-256 7f2c0ef09b461937a39d2799e420261c05fe99d734fc1b7751b25759097c0eb6

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 61f9360ef25595ece3c4c7cdb9b0123a09ec3d23c3b1339707fc1b05432899a6
MD5 38f992cf5f3a6701c26216bdc2602ddd
BLAKE2b-256 ccc40e0e02f82c6d3f6c3204eab62f7c1f43c6c4f594d54de36920398b6008d6

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aaf057938e19e87ef72cf04f204df41e288f67885a090d2356a7a18373d5a105
MD5 9ba9620c3064edc31a2f822a25429e93
BLAKE2b-256 31186f6fa7be900d57dfc76f786941c8dba507736439543aa47544682c1d709c

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a9bf7b8eeca4f273d4ce3c50e8a4d595a8a59e94e2783033511474757e809604
MD5 a08a6348e1c6a8652ac1b64bb19832dc
BLAKE2b-256 fd3b89c598d3c96a12a6b51fb49a0be7b86c93c83fbef0f5368179a3f948ff15

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9d58a692cad872f2f72bc0d920fed2ecf5da10856f1501c0ed68874846fe5a04
MD5 d7d05553876a45157390198a2ce999f5
BLAKE2b-256 928ee959d994946bd06348f35bed4ea7a546101a2268c6ed1c1337e43131ae34

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 767f5d0e74c033f3a4f093b82549d572e7cfac73542c058b248820a6b734aac9
MD5 edc262dd2a57d12be2f906cadc4073c6
BLAKE2b-256 3481ddf29d7ffbebc05e5d8a807016529449f958406b8442e7fc12f7d90acb9c

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyEDFlib-0.1.38-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for pyEDFlib-0.1.38-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 01d488d72b394a859a4b3de1ef6d29770e83bcc837f9f87a1a340b3d8bbf6b3a
MD5 eddce180bf765db8f7e5f926878aeaf2
BLAKE2b-256 8727d4ce48478f7d59e25a1b60852c328ce5e31c0589ab87cbae1f730000df41

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.38-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for pyEDFlib-0.1.38-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 e0259ab0a09b5ed4651149a0d990e3b77bdd5b2e7c7be45728df6c6bd1fe75e3
MD5 9ac93ccc81b562b740c3cf0bc24caf49
BLAKE2b-256 69d6758385e7e7048f702fa45815944711c1b620195f8b60f58c9d515a10eb41

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7a7e9b73252b72917b3232eb9e748d8f1cadffdc71450b5e1423689a861094bc
MD5 b1f9ff6fb1aec25b7ba1fee1e0cac57b
BLAKE2b-256 1645842180fe15b31aba0dc4321d41f7db3cf6e1249d15f10d48f051ab5adfc7

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 4ef60431484671e2fd6b9a7620630c0e1f8955abbbca820a30c40df44c8a1158
MD5 4124911762ffdf2cd35adb04bdde7e72
BLAKE2b-256 2b2b2ae30caf646637601ac8bba8d8723f4a63aa73afbb2b1c4e4a1ca4c41280

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 55886a301665b5f8f908e8dbcd6f47b748430e7636017c87293516ed2bc07ce5
MD5 3af1f84fd40e4ca345f3113884c92b1d
BLAKE2b-256 089aa171100533a4cdaf24470e986a178664304c64b73498098acf3a5be336ef

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3c34caa7b2752085da09c5689dee1c8f405ff3b81a3053c1c8f6f1c7de35f0b1
MD5 d1528dd7b0a810cb6746927aeea70fbf
BLAKE2b-256 7ac8ffd6c4959592871a9bd4a844aa2acd14394f66c56c5bdaf51411b62db777

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b3fcd854d2d82c3d45cb9c36f6fc7fd17fdc20a9b15858b781e6fb98853a9e87
MD5 7ebb05375176da8b188ca81785dd5a5e
BLAKE2b-256 3693b8f6c9198b1fe1b3e30a2a25ba522f2a391d3408bafbb111f99a33410552

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3f9566f12a32bbf6ae1a251c671fd714e47a5ed3bd5fa42a4f0c4e96b458a97f
MD5 357d9731c3f9b88a934efa51d767db98
BLAKE2b-256 03d30b826a88cdbbf5fee8e7b6677d9fa4ec0502d96f72037eccf839b054ab38

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8fced328a9e3c90cfa0bec041c681780bffd63a0057bca6cb5def6f402a2dc5f
MD5 3377d7ebad73b4354460ed07f9c9cfb1
BLAKE2b-256 1a22210e13ab611366efdccf95547decec4576b433f7487929817511f9887387

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 da053c6e14f3dac16b78c5a3a75d1551bf1b3df73b65c04c7d44ebbd41064dfa
MD5 4920563d62c8f3fa1970cba5418d1058
BLAKE2b-256 f907be80ae01e98a61349005f998885d6d4c15e7ccc53e32d5c91651be6b59d4

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.38-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for pyEDFlib-0.1.38-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 19f5eb7c28628b7cf966e0a553e7286900d35b01d0b5600cd8aa44e731df2249
MD5 3a2546c62d0ed513d552a0a23f5f331d
BLAKE2b-256 4a12803668eabdd8d5c7caa3c064acb7c2da9ee2b239eb98d0fd50984283daeb

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d7897b56d6fb93dcb4442fde35948d02f6003d7f739bed980d21c7f21066687c
MD5 627e2bec98332137ce84e554922ee1bb
BLAKE2b-256 1659317431ce8e0316386442f14bde44886925104b7bb1b9de0c309298488715

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp37-cp37m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp37-cp37m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 0b0859259c9a76e0b240ac9483bfd0bda12c9999f76ffce1619747c3954b346d
MD5 dc5765e59b6b53415e9f96dd8cfec39a
BLAKE2b-256 13dc1483ca59b40ec799379413d97e542a5ce0b402bd07c0c1e93bc6baff3162

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 21371686690844da570b4c292428be5cef5f07dd9b5a24d9410be2de0076ead5
MD5 e6a300c0523e56dfea88647dad0901e3
BLAKE2b-256 4b009793f82b197401049bc272471c9f5359926f9c461a53e7b80c7e7f35c99f

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e650fe1597a0ef01a619d0a5164c5bfb90781ccc963c2f2533bb0c4cb10891ce
MD5 7067f1eecdf2278d31f0dfed6129e682
BLAKE2b-256 1b95eb63392911d9cdb51d7e1e75187797d160f4848f570198b300e07145020d

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8bd68ad7d634bfe34d97a42956cb0c2dbc184b841502d242c6be69debf99d4da
MD5 d0a523f1106234928c0275f8f9a6b320
BLAKE2b-256 3af9791a42b33466c0b788e06504adabd94b6b0040304e145b8409bcfa8a9b0d

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0adbb2d131fac959ee7140b9925322733819e4a60d84fb4f2a4c7f56aa8f2c94
MD5 38e4587567eb5d4bde1174359206be82
BLAKE2b-256 875d3a9db9283921534a6db077fb5926a778e67aea5de80f09732e872bc515c6

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 9cda2632f2cc9e4b3094e08aeffd619c234335da69d66759f56f13cbade9c0f7
MD5 a76d61c35db36c2821c717ac4be9b43b
BLAKE2b-256 f0deb8e9313db030e44fe8f1235ff285e46ceff1f89a8b508628daef5b145ce7

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp36-cp36m-win32.whl.

File metadata

  • Download URL: pyEDFlib-0.1.38-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for pyEDFlib-0.1.38-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 3a182a4ab9722a46117ffd46f1efcb266e666d586a3236258ef6e65f57626658
MD5 f0efa057cf2d4d7b3eef745175f4d68c
BLAKE2b-256 ef48381251c27a506d68bbf80681183744d23b227708ac48f3d99481f0bd2979

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp36-cp36m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp36-cp36m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7d7536e38217b6cbab0f9ec80a7fa6314e4cf8f0f69d974e9781f99ba4708ff5
MD5 eb483aef15121f4de193ffef6d56650c
BLAKE2b-256 b27efda1ca58a2e0f1d543cfb523bf0d4019e46e1edc040fe9e4fe8acd062e40

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp36-cp36m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp36-cp36m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 1624ee681b94632e385a9186ba7b5fbe4becfbfbd43ed74e81cc1fe1f73253c4
MD5 6695e581aa0fa067ad375e2b8eae01f2
BLAKE2b-256 2ef303adb167980702bec7d5907e3806bda42d7e81e14410ac31babcccc9aca3

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 755fec5279f6f2fe41561f7065aa5100b1370e28cda15f60977e615fcd22577a
MD5 66b81e1405f2e3c7853e2579daf8138a
BLAKE2b-256 f0b2acbaacf58420d8d0b1b692557f5c20fa93558098e520f3c1f7461eb6aa9f

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 dcfbf7877ad8535dc2fc5f3a771b2ea4552cba32057b2f1bded093203767eb35
MD5 d69ae9b15989bbbb75a60b1b576189d4
BLAKE2b-256 cf1b63b60b6f677b3024ef364fab70f21f2bfa262fd75945bfd35d97481422b7

See more details on using hashes here.

File details

Details for the file pyEDFlib-0.1.38-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyEDFlib-0.1.38-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9c7dbac3c6857c780b5fb0b0f8f5bbc064997d28ee6a6fec860a78d069a8e304
MD5 d9a97003d845ae734c5a1627d8794f23
BLAKE2b-256 2458edcc14f0785ba53dae8534b29e1d3383456adb190967e9c9812dcd8a9fda

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page