Skip to main content

Python f2py extension wrapping eebls.f by Kovacs et al. 2002.

Project description

This is a module that wraps Geza Kovacs’ eebls.f. Taken from Daniel Foreman-Mackey’s python-bls module, and broken out for easier use by other packages. This is used by the astrobase module.

eebls.f

python-bls

pyeebls

Installation

This package is available from PyPI: https://pypi.python.org/pypi/pyeebls

You’ll need numpy installed, along with a Fortran compiler:

(venv)$ pip install numpy # in a virtualenv
# or use dnf/yum/apt install numpy to install systemwide

## you'll need a Fortran compiler to install pyeebls!         ##
## on Linux: dnf/yum/apt install gcc gcc-gfortran             ##
## on OSX (using homebrew): brew install gcc && brew link gcc ##

Then, install pyeebls using pip (preferably in a virtualenv or use the –user flag):

(venv)$ pip install pyeebls

Or download the tarball from PyPI, extract the files, and run setup.py:

(venv)$ python setup.py install

Documentation

There’s only one function to use in this module.

def pyeebls.eebls(times, mags, workarr_u, workarr_v,
                  nfreq, freqmin, stepsize,
                  nbins, minduration, maxduration):

Calculates the BLS spectrum for the input times and mags arrays.

Parameters

timesndarray

A numpy array containing the times of the measurements.

magsndarray

A numpy array containing the mags or fluxes to use as measurements.

workarr_u, workarr_vndarray

Numpy arrays that must be the same size as times, used as temp workspaces by the Fortran function.

nfreqint

The number of frequencies to search for the best period.

freqminfloat

The minimum frequency to use.

stepsizefloat

The stepsize in frequency units to use while searching.

nbinsint

The number of bins to use when phasing up the light curve at a single test period.

mindurationfloat

The minimum transit duration in phase units to consider when testing for a transit.

maxdurationfloat

The minimum transit duration in phase units to consider when testing for a transit.

Returns

A sequence of results:

(power, bestperiod, bestpower, transdepth,
 transduration, transingressbin, transegressbin)
powerndarray

A numpy array containing the values of the BLS spectrum at each tested frequency.

bestperiodfloat

The period at the highest peak in the frequency spectrum.

bestpowerfloat

The power at the highest peak in the frequency spectrum.

transdepthfloat

The depth of the transit at the best period.

transdurationfloat

The length of the transit as a fraction of the phase. This is the so-called ‘q’ parameter.

transingressbinint

The phase bin index for the start of the transit.

transegressbinint

The phase bin index for the end of the transit.

See Also

  • the comments at the top of eebls.f in this package

  • the kbls module in astrobase for a high-level serial and parallelized interface to this module

License

The license for the Python files is the MIT License. eebls.f is provided by G. Kovacs; it appears to be re-distributable, but please make sure to cite Kovacs, et al. 2002 if you use this implementation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyeebls-0.1.6.tar.gz (6.2 kB view details)

Uploaded Source

Built Distributions

pyeebls-0.1.6-cp38-cp38-manylinux2010_x86_64.whl (957.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pyeebls-0.1.6-cp37-cp37m-manylinux2010_x86_64.whl (956.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

pyeebls-0.1.6-cp37-cp37m-manylinux1_x86_64.whl (347.4 kB view details)

Uploaded CPython 3.7m

pyeebls-0.1.6-cp36-cp36m-win_amd64.whl (208.8 kB view details)

Uploaded CPython 3.6m Windows x86-64

pyeebls-0.1.6-cp36-cp36m-manylinux2010_x86_64.whl (955.5 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

pyeebls-0.1.6-cp36-cp36m-manylinux1_x86_64.whl (349.0 kB view details)

Uploaded CPython 3.6m

pyeebls-0.1.6-cp36-cp36m-macosx_10_12_x86_64.whl (622.8 kB view details)

Uploaded CPython 3.6m macOS 10.12+ x86-64

pyeebls-0.1.6-cp35-cp35m-manylinux1_x86_64.whl (349.6 kB view details)

Uploaded CPython 3.5m

pyeebls-0.1.6-cp34-cp34m-manylinux1_x86_64.whl (348.6 kB view details)

Uploaded CPython 3.4m

pyeebls-0.1.6-cp27-cp27mu-manylinux1_x86_64.whl (347.4 kB view details)

Uploaded CPython 2.7mu

pyeebls-0.1.6-cp27-cp27m-win_amd64.whl (207.5 kB view details)

Uploaded CPython 2.7m Windows x86-64

pyeebls-0.1.6-cp27-cp27m-manylinux1_x86_64.whl (347.4 kB view details)

Uploaded CPython 2.7m

pyeebls-0.1.6-cp27-cp27m-macosx_10_12_intel.whl (620.5 kB view details)

Uploaded CPython 2.7m macOS 10.12+ intel

File details

Details for the file pyeebls-0.1.6.tar.gz.

File metadata

  • Download URL: pyeebls-0.1.6.tar.gz
  • Upload date:
  • Size: 6.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pyeebls-0.1.6.tar.gz
Algorithm Hash digest
SHA256 8044f8ea9d922a80b9544b46c07d3e7d5cde260a60b7edbbba328d48214526d8
MD5 fabc72e774235fcdee26e02584a1bd1f
BLAKE2b-256 ee890ef2f31b7d103e522cf58cdf3a3c06fb87c2b57ae0bbc2c10eef2ffaecdd

See more details on using hashes here.

File details

Details for the file pyeebls-0.1.6-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: pyeebls-0.1.6-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 957.0 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.4.2 requests/2.20.0 setuptools/41.4.0 requests-toolbelt/0.8.0 tqdm/4.31.1 CPython/3.7.4

File hashes

Hashes for pyeebls-0.1.6-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b243e10c8e44c7f95cff2d201865d1dd1f2cdd2675d50825a372589025edd65c
MD5 21a6979103940f152e1eeef1d22417d0
BLAKE2b-256 113ad56e4d0f91a7ae368a74e1ef73f594ad921fb548157f639a78a2b5d5e699

See more details on using hashes here.

File details

Details for the file pyeebls-0.1.6-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: pyeebls-0.1.6-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 956.9 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.4.2 requests/2.20.0 setuptools/41.4.0 requests-toolbelt/0.8.0 tqdm/4.31.1 CPython/3.7.4

File hashes

Hashes for pyeebls-0.1.6-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 331271fc78ad9ff17a04996e9a60fd13f718191e23d3d3eb3780b03c8db25c55
MD5 95663a67d029f52fb27d4c2958952bf8
BLAKE2b-256 2ffd869deb2605ce241244f1c62b1266c7a0ef605561678bce39e413e450d517

See more details on using hashes here.

File details

Details for the file pyeebls-0.1.6-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyeebls-0.1.6-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 347.4 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.20.0 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.7.2

File hashes

Hashes for pyeebls-0.1.6-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 855978ae5eb0fc94daf157519d62d8db357d6bc5b3c333830f8da39f2d7a295e
MD5 0987d94e91ed55714cd25e42777d7fe8
BLAKE2b-256 3f38d068f72cc75adef40cfa93ba07c81cfbc844dd842300c38b2abdce7ebab9

See more details on using hashes here.

File details

Details for the file pyeebls-0.1.6-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pyeebls-0.1.6-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 f6ce8637945cbb1a080beac1d49a1611a0e21f9a80ad553c65650d9a0d10ee03
MD5 51b2b4448c85c1c140e6fce2fccb5dac
BLAKE2b-256 9a8b3eee94084ef65535b2e167a48b4b83bd3ce44cce8b042e001d8d024c513a

See more details on using hashes here.

File details

Details for the file pyeebls-0.1.6-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: pyeebls-0.1.6-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 955.5 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.4.2 requests/2.20.0 setuptools/41.4.0 requests-toolbelt/0.8.0 tqdm/4.31.1 CPython/3.7.4

File hashes

Hashes for pyeebls-0.1.6-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d0bc7c3984ece8a1e137fe0b0be6781d37a46cbef0ea121f8a89f12805848660
MD5 e8ac8f44f4a8e4695db284cc1f4791b8
BLAKE2b-256 8403b239655cca9ab1806dbfd0db059a573cd5d8326b54be9dd8534874f46007

See more details on using hashes here.

File details

Details for the file pyeebls-0.1.6-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyeebls-0.1.6-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bb3c47a40e3c6646e113c87473104dd8e9bc4bd2954ddb2af4997f65761e2792
MD5 1d65332630242bf6c7808de1c244b8b1
BLAKE2b-256 110bc53c0e7f3580b4f48b9f2438a5c7e68c9506b4ab08712b4ac6fbe5721298

See more details on using hashes here.

File details

Details for the file pyeebls-0.1.6-cp36-cp36m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for pyeebls-0.1.6-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 ab61558e2b281f7f3b01b541ba8649e335faf422ca2b07bb2072f4ebf7e5d434
MD5 739c9d987b4092646efaf7620d17140f
BLAKE2b-256 9606fad5a510fe8826a4a97e139dd56bb5eb05f658740cebcf172db9707231a3

See more details on using hashes here.

File details

Details for the file pyeebls-0.1.6-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyeebls-0.1.6-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 cb6068f657bc98d28639dcb7691713029333710e18cce092485ef0c20089bb17
MD5 1fbf5f4d4a040f608863bc6bd1c2ab00
BLAKE2b-256 08b16fd72d6350cb2f5266cc52d7fdabe3d19a27b5acb5459ec1ce714473eeca

See more details on using hashes here.

File details

Details for the file pyeebls-0.1.6-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyeebls-0.1.6-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8a810e96a58ce53d94ad9d86de523592d5d8d509067037025bfbc59bd499899d
MD5 31d86ad455e77275fd7e79e8cd539f33
BLAKE2b-256 7f2abb42f4af0ec73aa3d3b092a5e7a892fcdde838779382bd785babf25c128c

See more details on using hashes here.

File details

Details for the file pyeebls-0.1.6-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyeebls-0.1.6-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 62c28b97e0471dc8393089a68106b89a41ccc5b78a37c656ff4ad620fff1cd5b
MD5 d584ad11bd4f01825338f8e46ec819d3
BLAKE2b-256 bb35dd9ab7d275e9d273ce9e2934e0e073f8a2047994b974e3486c9e3ee26372

See more details on using hashes here.

File details

Details for the file pyeebls-0.1.6-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for pyeebls-0.1.6-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 d7bd7538b5b2ef28bcfa6298a84c274d4fafdad42390013bd69a0ed6ae0af4e3
MD5 7f5cf3699d4e22d409e4ea219ee89f5d
BLAKE2b-256 ce3847bd5fb2bb629bb6476bf9bf07a9c143874c89b8590840b81bde0f126e87

See more details on using hashes here.

File details

Details for the file pyeebls-0.1.6-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyeebls-0.1.6-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 63c8e12158e27538e10e59867066596002d140dc084b0a8339a0f55d71aa58f4
MD5 e0a2167c41530fa98e2c0aa2010b66b1
BLAKE2b-256 c15133ffea1f58c5fc229375240ededf070609cfe9565ae60b68600b017fac2d

See more details on using hashes here.

File details

Details for the file pyeebls-0.1.6-cp27-cp27m-macosx_10_12_intel.whl.

File metadata

File hashes

Hashes for pyeebls-0.1.6-cp27-cp27m-macosx_10_12_intel.whl
Algorithm Hash digest
SHA256 3483333adcc2dc29fa66690a02bbf0209584ce6649b88806e733e95c69a0d2c4
MD5 2f9deb26c3ddd41a8fdb8e4ae1043c1d
BLAKE2b-256 ac6e30ccfae4851e2285f0e98e11bc8be24551e52e9c7d3cf291a437d162e628

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page