Python f2py extension wrapping eebls.f by Kovacs et al. 2002.
Project description
This is a module that wraps Geza Kovacs’ eebls.f. Taken from Daniel Foreman-Mackey’s python-bls module, and broken out for easier use by other packages. This is used by the astrobase module.
eebls.f
Kovacs, Zucker & Mazeh 2002, A&A, Vol. 391, 369
python-bls
Foreman-Mackey, D., Angus, R., et al. 2012
pyeebls
Bhatti, W., et al. 2017
Installation
This package is available from PyPI: https://pypi.python.org/pypi/pyeebls
You’ll need numpy installed, along with a Fortran compiler:
(venv)$ pip install numpy # in a virtualenv # or use dnf/yum/apt install numpy to install systemwide ## you'll need a Fortran compiler to install pyeebls! ## ## on Linux: dnf/yum/apt install gcc gcc-gfortran ## ## on OSX (using homebrew): brew install gcc && brew link gcc ##
Then, install pyeebls using pip (preferably in a virtualenv or use the –user flag):
(venv)$ pip install pyeebls
Or download the tarball from PyPI, extract the files, and run setup.py:
(venv)$ python setup.py install
Documentation
There’s only one function to use in this module.
def pyeebls.eebls(times, mags, workarr_u, workarr_v, nfreq, freqmin, stepsize, nbins, minduration, maxduration):
Calculates the BLS spectrum for the input times and mags arrays.
Parameters
- timesndarray
A numpy array containing the times of the measurements.
- magsndarray
A numpy array containing the mags or fluxes to use as measurements.
- workarr_u, workarr_vndarray
Numpy arrays that must be the same size as times, used as temp workspaces by the Fortran function.
- nfreqint
The number of frequencies to search for the best period.
- freqminfloat
The minimum frequency to use.
- stepsizefloat
The stepsize in frequency units to use while searching.
- nbinsint
The number of bins to use when phasing up the light curve at a single test period.
- mindurationfloat
The minimum transit duration in phase units to consider when testing for a transit.
- maxdurationfloat
The minimum transit duration in phase units to consider when testing for a transit.
Returns
A sequence of results:
(power, bestperiod, bestpower, transdepth, transduration, transingressbin, transegressbin)
- powerndarray
A numpy array containing the values of the BLS spectrum at each tested frequency.
- bestperiodfloat
The period at the highest peak in the frequency spectrum.
- bestpowerfloat
The power at the highest peak in the frequency spectrum.
- transdepthfloat
The depth of the transit at the best period.
- transdurationfloat
The length of the transit as a fraction of the phase. This is the so-called ‘q’ parameter.
- transingressbinint
The phase bin index for the start of the transit.
- transegressbinint
The phase bin index for the end of the transit.
See Also
License
The license for the Python files is the MIT License. eebls.f is provided by G. Kovacs; it appears to be re-distributable, but please make sure to cite Kovacs, et al. 2002 if you use this implementation.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for pyeebls-0.1.6-cp38-cp38-manylinux2010_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b243e10c8e44c7f95cff2d201865d1dd1f2cdd2675d50825a372589025edd65c |
|
MD5 | 21a6979103940f152e1eeef1d22417d0 |
|
BLAKE2b-256 | 113ad56e4d0f91a7ae368a74e1ef73f594ad921fb548157f639a78a2b5d5e699 |
Hashes for pyeebls-0.1.6-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 331271fc78ad9ff17a04996e9a60fd13f718191e23d3d3eb3780b03c8db25c55 |
|
MD5 | 95663a67d029f52fb27d4c2958952bf8 |
|
BLAKE2b-256 | 2ffd869deb2605ce241244f1c62b1266c7a0ef605561678bce39e413e450d517 |
Hashes for pyeebls-0.1.6-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 855978ae5eb0fc94daf157519d62d8db357d6bc5b3c333830f8da39f2d7a295e |
|
MD5 | 0987d94e91ed55714cd25e42777d7fe8 |
|
BLAKE2b-256 | 3f38d068f72cc75adef40cfa93ba07c81cfbc844dd842300c38b2abdce7ebab9 |
Hashes for pyeebls-0.1.6-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f6ce8637945cbb1a080beac1d49a1611a0e21f9a80ad553c65650d9a0d10ee03 |
|
MD5 | 51b2b4448c85c1c140e6fce2fccb5dac |
|
BLAKE2b-256 | 9a8b3eee94084ef65535b2e167a48b4b83bd3ce44cce8b042e001d8d024c513a |
Hashes for pyeebls-0.1.6-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d0bc7c3984ece8a1e137fe0b0be6781d37a46cbef0ea121f8a89f12805848660 |
|
MD5 | e8ac8f44f4a8e4695db284cc1f4791b8 |
|
BLAKE2b-256 | 8403b239655cca9ab1806dbfd0db059a573cd5d8326b54be9dd8534874f46007 |
Hashes for pyeebls-0.1.6-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | bb3c47a40e3c6646e113c87473104dd8e9bc4bd2954ddb2af4997f65761e2792 |
|
MD5 | 1d65332630242bf6c7808de1c244b8b1 |
|
BLAKE2b-256 | 110bc53c0e7f3580b4f48b9f2438a5c7e68c9506b4ab08712b4ac6fbe5721298 |
Hashes for pyeebls-0.1.6-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ab61558e2b281f7f3b01b541ba8649e335faf422ca2b07bb2072f4ebf7e5d434 |
|
MD5 | 739c9d987b4092646efaf7620d17140f |
|
BLAKE2b-256 | 9606fad5a510fe8826a4a97e139dd56bb5eb05f658740cebcf172db9707231a3 |
Hashes for pyeebls-0.1.6-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | cb6068f657bc98d28639dcb7691713029333710e18cce092485ef0c20089bb17 |
|
MD5 | 1fbf5f4d4a040f608863bc6bd1c2ab00 |
|
BLAKE2b-256 | 08b16fd72d6350cb2f5266cc52d7fdabe3d19a27b5acb5459ec1ce714473eeca |
Hashes for pyeebls-0.1.6-cp34-cp34m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8a810e96a58ce53d94ad9d86de523592d5d8d509067037025bfbc59bd499899d |
|
MD5 | 31d86ad455e77275fd7e79e8cd539f33 |
|
BLAKE2b-256 | 7f2abb42f4af0ec73aa3d3b092a5e7a892fcdde838779382bd785babf25c128c |
Hashes for pyeebls-0.1.6-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 62c28b97e0471dc8393089a68106b89a41ccc5b78a37c656ff4ad620fff1cd5b |
|
MD5 | d584ad11bd4f01825338f8e46ec819d3 |
|
BLAKE2b-256 | bb35dd9ab7d275e9d273ce9e2934e0e073f8a2047994b974e3486c9e3ee26372 |
Hashes for pyeebls-0.1.6-cp27-cp27m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d7bd7538b5b2ef28bcfa6298a84c274d4fafdad42390013bd69a0ed6ae0af4e3 |
|
MD5 | 7f5cf3699d4e22d409e4ea219ee89f5d |
|
BLAKE2b-256 | ce3847bd5fb2bb629bb6476bf9bf07a9c143874c89b8590840b81bde0f126e87 |
Hashes for pyeebls-0.1.6-cp27-cp27m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 63c8e12158e27538e10e59867066596002d140dc084b0a8339a0f55d71aa58f4 |
|
MD5 | e0a2167c41530fa98e2c0aa2010b66b1 |
|
BLAKE2b-256 | c15133ffea1f58c5fc229375240ededf070609cfe9565ae60b68600b017fac2d |
Hashes for pyeebls-0.1.6-cp27-cp27m-macosx_10_12_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3483333adcc2dc29fa66690a02bbf0209584ce6649b88806e733e95c69a0d2c4 |
|
MD5 | 2f9deb26c3ddd41a8fdb8e4ae1043c1d |
|
BLAKE2b-256 | ac6e30ccfae4851e2285f0e98e11bc8be24551e52e9c7d3cf291a437d162e628 |