Skip to main content

Python f2py extension wrapping eebls.f by Kovacs et al. 2002.

Project description

pyeebls

This is a module that wraps Geza Kovacs' eebls.f. Taken from Daniel Foreman-Mackey's python-bls module and broken out for easier use by other packages. This is used by the astrobase.periodbase module.

eebls.f

python-bls

pyeebls

Installation

This package is available from PyPI: https://pypi.python.org/pypi/pyeebls. If you're using Python 2.7, 3.4--3.6 on 64-bit Linux or Python 2.7/3.6 on 64-bit Windows or Mac OSX >= 10.12, you should be able to install the binary wheels from PyPI so no Fortran compiler is needed.

(venv)$ pip install pyeebls

If this is not the case, you'll need to have numpy installed, along with a Fortran compiler:

(venv)$ pip install numpy # in a virtualenv
# or use dnf/yum/apt install numpy to install systemwide

## you'll need a Fortran compiler to install pyeebls!         ##
## on Linux: dnf/yum/apt install gcc gcc-gfortran             ##
## on OSX (using homebrew): brew install gcc && brew link gcc ##

Then, install pyeebls using pip (preferably in a virtualenv or use the --user flag):

(venv)$ pip install pyeebls

Or download the tarball from PyPI, extract the files, and run setup.py:

(venv)$ python setup.py install

Documentation

There's only one function to use in this module.

def pyeebls.eebls(times, mags, workarr_u, workarr_v,
                  nfreq, freqmin, stepsize,
                  nbins, minduration, maxduration):

Calculates the BLS spectrum for the input times and mags arrays.

Parameters

times : ndarray : A numpy array containing the times of the measurements.

mags : ndarray : A numpy array containing the mags or fluxes to use as measurements.

workarr_u, workarr_v : ndarray : Numpy arrays that must be the same size as times, used as temp workspaces by the Fortran function.

nfreq : int : The number of frequencies to search for the best period.

freqmin : float : The minimum frequency to use.

stepsize : float : The stepsize in frequency units to use while searching.

nbins : int : The number of bins to use when phasing up the light curve at a single test period.

minduration : float : The minimum transit duration in phase units to consider when testing for a transit.

maxduration : float : The minimum transit duration in phase units to consider when testing for a transit.

Returns

A sequence of results:

(power, bestperiod, bestpower, transdepth,
 transduration, transingressbin, transegressbin)

power : ndarray : A numpy array containing the values of the BLS spectrum at each tested frequency.

bestperiod : float : The period at the highest peak in the frequency spectrum.

bestpower : float : The power at the highest peak in the frequency spectrum.

transdepth : float : The depth of the transit at the best period.

transduration : float : The length of the transit as a fraction of the phase. This is the so-called 'q' parameter.

transingressbin : int : The phase bin index for the start of the transit.

transegressbin : int : The phase bin index for the end of the transit.

See Also

  • the comments at the top of eebls.f in this package
  • the astrobase.periodbase.kbls module for a high-level interface to this module

License

The license for the Python files is the MIT License. eebls.f is provided by G. Kovacs; it appears to be re-distributable, but please make sure to cite Kovacs, et al. 2002 if you use this implementation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyeebls-0.2.0.tar.gz (7.7 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

pyeebls-0.2.0-cp313-cp313-musllinux_1_2_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

pyeebls-0.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

pyeebls-0.2.0-cp313-cp313-macosx_14_0_arm64.whl (737.0 kB view details)

Uploaded CPython 3.13macOS 14.0+ ARM64

pyeebls-0.2.0-cp313-cp313-macosx_13_0_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.13macOS 13.0+ x86-64

pyeebls-0.2.0-cp312-cp312-musllinux_1_2_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

pyeebls-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

pyeebls-0.2.0-cp312-cp312-macosx_14_0_arm64.whl (737.0 kB view details)

Uploaded CPython 3.12macOS 14.0+ ARM64

pyeebls-0.2.0-cp312-cp312-macosx_13_0_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.12macOS 13.0+ x86-64

pyeebls-0.2.0-cp311-cp311-musllinux_1_2_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

pyeebls-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

pyeebls-0.2.0-cp311-cp311-macosx_14_0_arm64.whl (736.8 kB view details)

Uploaded CPython 3.11macOS 14.0+ ARM64

pyeebls-0.2.0-cp311-cp311-macosx_13_0_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11macOS 13.0+ x86-64

pyeebls-0.2.0-cp310-cp310-musllinux_1_2_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

pyeebls-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

pyeebls-0.2.0-cp310-cp310-macosx_14_0_arm64.whl (736.8 kB view details)

Uploaded CPython 3.10macOS 14.0+ ARM64

pyeebls-0.2.0-cp310-cp310-macosx_13_0_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10macOS 13.0+ x86-64

pyeebls-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

pyeebls-0.2.0-cp39-cp39-macosx_14_0_arm64.whl (736.8 kB view details)

Uploaded CPython 3.9macOS 14.0+ ARM64

pyeebls-0.2.0-cp39-cp39-macosx_13_0_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9macOS 13.0+ x86-64

pyeebls-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

pyeebls-0.2.0-cp38-cp38-macosx_14_0_arm64.whl (736.4 kB view details)

Uploaded CPython 3.8macOS 14.0+ ARM64

pyeebls-0.2.0-cp38-cp38-macosx_13_0_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8macOS 13.0+ x86-64

File details

Details for the file pyeebls-0.2.0.tar.gz.

File metadata

  • Download URL: pyeebls-0.2.0.tar.gz
  • Upload date:
  • Size: 7.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.12

File hashes

Hashes for pyeebls-0.2.0.tar.gz
Algorithm Hash digest
SHA256 d0ecc3d1e3961f40cbc5746e0bfbbbe1b30e9a8f26bcb16ce6aa8e6e3cc7ee66
MD5 bfc173d9c7d4469fff81f81681a6dddf
BLAKE2b-256 86e774792e608fc891ce8a682370cea8712524443efedee28a96972d2d939c6a

See more details on using hashes here.

File details

Details for the file pyeebls-0.2.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyeebls-0.2.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 dd32eec83db7f41ffffb911b7aeec94c5b6e5db21467077a057ce68dbc5c31ea
MD5 b7fc232e414b157745c874779fb90873
BLAKE2b-256 00bb12b02a85c57c30474b806b2a710ecc9dbd84120e17d448761370458be7da

See more details on using hashes here.

File details

Details for the file pyeebls-0.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyeebls-0.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ceb6d6e205cf81cc69ea5fa8a71bcd03e4958b841525ae6757c4d1734199f06b
MD5 5c845550d882be1356a7332698fa450d
BLAKE2b-256 a04071ed838e0b45b978c138616457ed4911d3168354c933858e4022a2b9cbb5

See more details on using hashes here.

File details

Details for the file pyeebls-0.2.0-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyeebls-0.2.0-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 2df848d8b8da617309547b2f57a3357df7aa054d115d8da1fb7d42288369cb2c
MD5 d40f82eb86412bb788bf26ea3fb6bc98
BLAKE2b-256 aea5c88ce18a5c6a60794ec0332a0c851b47cc7a52ce4b4f8556ff09cb2907e0

See more details on using hashes here.

File details

Details for the file pyeebls-0.2.0-cp313-cp313-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pyeebls-0.2.0-cp313-cp313-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 24bfd19db7104872840f12d87b290b95cd2802412a420b2b42b95527bcdda037
MD5 314d19e8acda80320716caead7b4909c
BLAKE2b-256 2add5e4f7fe9fcb2d952fa6970e8390bc30cd4213c317865b9673ee7479f85fa

See more details on using hashes here.

File details

Details for the file pyeebls-0.2.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyeebls-0.2.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6ea2a850656c4275d6b0570f94f03cd4419c941c49227acb1349c8ad86a11537
MD5 f6352b45a5595fb9b2679bb5890bdaff
BLAKE2b-256 2c2680ba2d68ff598a090b5b1ef760c125536f034f163bea669ddc10fd72ff26

See more details on using hashes here.

File details

Details for the file pyeebls-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyeebls-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a17a0230228ea85d70f575e9d65daea879484d4e252dee294bacdf2323e5d256
MD5 f2578365b4bf077667c0cde1ef56442e
BLAKE2b-256 7688a904a240b1153e6cc7a54ab4995633562191a72e3f425ed1ac2907d937db

See more details on using hashes here.

File details

Details for the file pyeebls-0.2.0-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyeebls-0.2.0-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 431688bf76f29e6b7237a52109bc78270f88e7ffb4de676033d36ba3b321a541
MD5 781d268456302e8686a9111b36e3be9b
BLAKE2b-256 ad7f0d0fd0b7a54a6bc924d149b16d2f2942bf9285b10298e97c97ab90a87881

See more details on using hashes here.

File details

Details for the file pyeebls-0.2.0-cp312-cp312-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pyeebls-0.2.0-cp312-cp312-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 9ae9d3c3ae99146e3482c1240e4acd1fd0f071f7f1a6d2f03cca0563489a9f1f
MD5 fba7b02fe32bd2ec469b1ef1e1912305
BLAKE2b-256 d74082772770abf1d4fd82628969209251c539448e0e5941624fe13dd270d92f

See more details on using hashes here.

File details

Details for the file pyeebls-0.2.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyeebls-0.2.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9b2ffbf2ee7be21b9e2cf961dc32f4a009f0c5c8bdee72c11edb1b856c2f6df8
MD5 53bfcddc656ede1265e9e60a97df25ab
BLAKE2b-256 d2d77c0df99d7b1e49c4de35dac281f69cc90193e0e0b2685e43c7bfda2ac870

See more details on using hashes here.

File details

Details for the file pyeebls-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyeebls-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8eedf8cf00ecab8249b0cd0b0cadfcdd349fb8ee2a6065ea8cee66e5d6cde676
MD5 7af53d20f15135a339c1f9249a871950
BLAKE2b-256 5a0a5687fe93b476b597c2751c44f0754634d39143596424a2cadf34ce6a70f8

See more details on using hashes here.

File details

Details for the file pyeebls-0.2.0-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyeebls-0.2.0-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 e800bd1957a6d4b43628ebaa094eefe2c0bcdbfa6ca8d63911e261afeedde916
MD5 f4cca0bcb5f22037756aed88366d5c15
BLAKE2b-256 7a9df187d4d25f53dd0d419ab389def012859409e8da02f0bf22586e4eb1dc75

See more details on using hashes here.

File details

Details for the file pyeebls-0.2.0-cp311-cp311-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pyeebls-0.2.0-cp311-cp311-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 f49f56ae329466a5301b7b59702bd31fd3c2466c2ee538c04c0003cf6d2c5184
MD5 1b57fbf2c5c65fa41b94db3907076c60
BLAKE2b-256 70b6703cefde80e186af3cb9178a0869ae24b143409e1c99379b0135322d765a

See more details on using hashes here.

File details

Details for the file pyeebls-0.2.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyeebls-0.2.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 072c549994d5a5cd78bdc911cc7c8425ed2dbc8387846238db6e57b9a4889a7c
MD5 5d970855a6dc418fd84b0f6822daaffe
BLAKE2b-256 06e5dd93af8cbf41cfdcbde1db1d8836297e1286ec311f30ab6ccb1b58c3281e

See more details on using hashes here.

File details

Details for the file pyeebls-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyeebls-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 66481e8dae432397708d8d83161f82325f9e897398fc5630718c08146d061de1
MD5 eb9ee87ad6790ee48157f4233c972983
BLAKE2b-256 d5b22c90fae229ae9616d944f10f20b2b82f9c22430236c69083c28745fe5852

See more details on using hashes here.

File details

Details for the file pyeebls-0.2.0-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyeebls-0.2.0-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 4bfeb5b2494a64cb8155a6027e5abf552b5ed7f8b1b82284c6619dbc43dc0d0b
MD5 eee36f26f5c2b9eb9d18c9998661f72e
BLAKE2b-256 cbe2e2c6653d84929bb3c4c39465aacaf69bc469f48d5ab2d119a56cb8848c3e

See more details on using hashes here.

File details

Details for the file pyeebls-0.2.0-cp310-cp310-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pyeebls-0.2.0-cp310-cp310-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 a3f7fed74864945bb595666e03cf909e645f3c827f956f94b9a93496f9962cf7
MD5 a34fef5e06f160bf1d8d86e2dc999f17
BLAKE2b-256 d5a2060b4dfbe0ade2434d9bab4440cf015bfbcb671db0aa97e997851690f72b

See more details on using hashes here.

File details

Details for the file pyeebls-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyeebls-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3e32fdabbbabba8ebe19726cb720d7ffaa852a23b2e95d6ecff1ebb7f29d99ca
MD5 919d4b6f4e7177dfa17c1077dd53655a
BLAKE2b-256 f0b34492ef37a0a6f665168bf98027b6002682a0a01b8367787364e5bbc93100

See more details on using hashes here.

File details

Details for the file pyeebls-0.2.0-cp39-cp39-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyeebls-0.2.0-cp39-cp39-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 a6c76cdc2af09c62d25d979136c5608640722553732ca110cd540e34ac12c467
MD5 0fbd21d0fad24417a5c5877939f07d4f
BLAKE2b-256 ee779fb27c72ee5f37df7b4219d8e0ef9713626f89a22b7f4c52598d89c15f3e

See more details on using hashes here.

File details

Details for the file pyeebls-0.2.0-cp39-cp39-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pyeebls-0.2.0-cp39-cp39-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 740ddd2515560fd1e1b5e98ad46d798ccea7c88680a6d5ce6e6cc8f61f71859b
MD5 f45afc0ed1f5188a29c75a6b475eee17
BLAKE2b-256 fd7f8eb12baaa71e76748f4957d66c19948d73430c8bf7513139c7921134395d

See more details on using hashes here.

File details

Details for the file pyeebls-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyeebls-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 76c20f0f1f5e71b7ce584a739eee2d13dbd95cae49699120d357ea076ae41812
MD5 af409e7e13eeb7bd0180d5ba57dc454e
BLAKE2b-256 d447b0bb3edbe59072e6e782b364aaddd7b7986c518599a7db7763dc9cb24c51

See more details on using hashes here.

File details

Details for the file pyeebls-0.2.0-cp38-cp38-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pyeebls-0.2.0-cp38-cp38-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 5985d61b75b980d5e42a50b5ec67ca4746d472a311a6a810d4ac3cbabc99a1e7
MD5 12840d9e81e2fb0950b31d335d9eb545
BLAKE2b-256 e7f71472c11fb048327d9c3ea77c8b0df7450c983d0ea7bc60e199cc4d943ace

See more details on using hashes here.

File details

Details for the file pyeebls-0.2.0-cp38-cp38-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pyeebls-0.2.0-cp38-cp38-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 7ed42bede5a62f05a1b4f310ab7a5e0aaf6d305b97cb49cef390c2b4b013c2a4
MD5 9a706fc164de352ee09115a4d5826e6f
BLAKE2b-256 340b682fb921ad1a725de956c67e2d8476536313a5c511ef06eebf23c205f60c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page