Skip to main content

PyEPH es una librería para el procesamiento de la Encuesta Permanente de Hogares (eph) en Python. Permite la descarga de archivos de EPH's y otros como la canasta basica y adulto equivalente , como asi también algunos calculos rápidos relacionados con las mismas

Project description

PyEPH - Libreria para el procesamiento de la Encuesta Permanente de Hogares en Python

PyPI PyPI - License PyPI - Python Version PyPI - Downloads Downloads Documentation Status DOI

La librería Pyeph tiene como objetivo facilitar el procesamiento en Python de las Encuesta Permanente de Hogares (eph) publicadas por INDEC de forma periódica. Está pensada como un espacio donde se nuclean y centralizan los cálculos vinculados a las mismas para posteriormente ser utilizadas en investigaciones, artículos, publicaciones, etc. Es una librería que hace principal hincapié en la transparencia metodológica utilizando licencias de código abierto y que promueve la colaboración de las comunidades de cientístas de datos, sociales, investigadorxs, desarrolladorxs, periodistas y demás curiosxs.

Permite la descarga de archivos de EPH's y otros como la canasta basica y adulto equivalente , como asi también algunos calculos rápidos relacionados con las mismas

👷‍♀️ Cómo colaborar

¡Las contribuciones son bienvenidas! Si estás interesado en mejorar la librería o agregar nuevas funcionalidades o cálculos, por favor revisa nuestra guía de contribución para obtener más información.

Cómo citar la librería

Carolina Trogliero, Mariano Valdez y Maria Frances Gaska (2022). PyEPH: Librería para la obtención y el procesamiento de la Encuesta Permanente de Hogares (EPH-INDEC). PyEPH version https://doi.org/10.5281/zenodo.6727908

Instalación

Pueden probar nuestra notebook de ejemplo en Google Colab

Recordá abrir en una nueva pestaña

Prerequisitos

Instalando PyEPH

  • Abra una terminal del sistema y escriba
$ pip install pyeph

Uso básico

Los siguientes son algunos ejemplos de uso. Para ver todos los cálculos podés ir para la documentación

En inglés

import pyeph

# Obtención
eph = pyeph.get(data="eph", year=2021, period=2, base_type='individual') # EPH individual
basket = pyeph.get(data="canastas") # canasta basica total y alimentaria
adequi = pyeph.get(data="adulto-equivalente") # adulto equivalente

# Cálculos de ejemplo de pobreza
poverty = pyeph.Poverty(eph, basket)
population_poverty = poverty.population(group_by='CH04') # Población pobre por sexo
labeled_poverty = pyeph.map_labels(population_poverty) # Etiquetado de las variables

# Cálculos de Mercado Laboral
labor_market = pyeph.LaborMarket(eph)
unemployment = labor_market.unemployment(group_by="REGION", div_by="PT") # Desempleo agrupado por region y dividiendo por Población Total
labeled_unemployment = pyeph.map_labels(unemployment) # Etiquetado de las variables

En español

import pyeph

# Obtención
eph = pyeph.obtener(data="eph", ano=2021, periodo=2, tipo_base='individual') # EPH individual
canastas = pyeph.obtener(data="canastas") # canasta basica total y alimentaria
adequi = pyeph.obtener(data="adulto-equivalente") # adulto equivalente

# Cálculos de ejemplo de pobreza
pobreza = pyeph.Pobreza(eph, canastas)
poblacion_pobre = pobreza.poblacion(agrupar_por='CH04') # Población pobre por sexo
poblacion_pobre_etiquetado = pyeph.etiquetar(poblacion_pobre) # Etiquetado de las variables

# Cálculos de Mercado Laboral
mercado_laboral = pyeph.MercadoLaboral(eph)
desempleo = mercado_laboral.desempleo(agrupar_por="REGION", div_por="PT") # Desempleo agrupado por region y dividiendo por Población Total
desempleo_etiquetado = pyeph.etiquetar(desempleo) # Etiquetado de las variables

Documentación

Link del sitio de la documentación


Agradecimientos

Dejamos aquí un especial agradecimiento al equipo de desarrollo de la librería EPH en R. Todo el amor para elles ❤️ y a Rami Argañaraz por armarnos el loguito 😻


⌨️ con ❤️

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyeph-1.3.0.tar.gz (61.6 kB view details)

Uploaded Source

Built Distribution

pyeph-1.3.0-py3-none-any.whl (65.4 kB view details)

Uploaded Python 3

File details

Details for the file pyeph-1.3.0.tar.gz.

File metadata

  • Download URL: pyeph-1.3.0.tar.gz
  • Upload date:
  • Size: 61.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.4 CPython/3.12.1 Linux/6.5.0-1025-azure

File hashes

Hashes for pyeph-1.3.0.tar.gz
Algorithm Hash digest
SHA256 97f31321be5fa377d76b7a6790ee9ea8f628e1ebb1d657d9c1db9ed4d8554cba
MD5 1b7b3cfcc86da00461258313ab3ae8c4
BLAKE2b-256 75639758a4c81e0cb3524f6e64c07d242a36796626d014522af73001d0df902d

See more details on using hashes here.

File details

Details for the file pyeph-1.3.0-py3-none-any.whl.

File metadata

  • Download URL: pyeph-1.3.0-py3-none-any.whl
  • Upload date:
  • Size: 65.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.4 CPython/3.12.1 Linux/6.5.0-1025-azure

File hashes

Hashes for pyeph-1.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c7f7c29bd70d23efeac79d99b7cd29e7817df172d6818e074b47462eb67cff83
MD5 d67e92a11a709a2703062a533dd693c7
BLAKE2b-256 cf1491d24e30eab1c29d0e4b86a5c0d88de1694976c18963a3f38750d2391905

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page