Skip to main content

PyEPH es una librería para el procesamiento de la Encuesta Permanente de Hogares (eph) en Python. Permite la descarga de archivos de EPH's y otros como la canasta basica y adulto equivalente , como asi también algunos calculos rápidos relacionados con las mismas

Project description

PyEPH - Libreria para el procesamiento de la Encuesta Permanente de Hogares en Python

PyPI PyPI - License PyPI - Python Version PyPI - Downloads Downloads Documentation Status DOI

La librería Pyeph tiene como objetivo facilitar el procesamiento en Python de las Encuesta Permanente de Hogares (eph) publicadas por INDEC de forma periódica. Está pensada como un espacio donde se nuclean y centralizan los cálculos vinculados a las mismas para posteriormente ser utilizadas en investigaciones, artículos, publicaciones, etc. Es una librería que hace principal hincapié en la transparencia metodológica utilizando licencias de código abierto y que promueve la colaboración de las comunidades de cientístas de datos, sociales, investigadorxs, desarrolladorxs, periodistas y demás curiosxs.

Permite la descarga de archivos de EPH's y otros como la canasta basica y adulto equivalente , como asi también algunos calculos rápidos relacionados con las mismas

👷‍♀️ Cómo colaborar

¡Las contribuciones son bienvenidas! Si estás interesado en mejorar la librería o agregar nuevas funcionalidades o cálculos, por favor revisa nuestra guía de contribución para obtener más información.

Cómo citar la librería

Carolina Trogliero, Mariano Valdez y Maria Frances Gaska (2022). PyEPH: Librería para la obtención y el procesamiento de la Encuesta Permanente de Hogares (EPH-INDEC). PyEPH version https://doi.org/10.5281/zenodo.6727908

Instalación

Pueden probar nuestra notebook de ejemplo en Google Colab

Recordá abrir en una nueva pestaña

Prerequisitos

Instalando PyEPH

  • Abra una terminal del sistema y escriba
$ pip install pyeph

Uso básico

Los siguientes son algunos ejemplos de uso. Para ver todos los cálculos podés ir para la documentación

En inglés

import pyeph

# Obtención
eph = pyeph.get(data="eph", year=2021, period=2, base_type='individual') # EPH individual
basket = pyeph.get(data="canastas") # canasta basica total y alimentaria
adequi = pyeph.get(data="adulto-equivalente") # adulto equivalente

# Cálculos de ejemplo de pobreza
poverty = pyeph.Poverty(eph, basket)
population_poverty = poverty.population(group_by='CH04') # Población pobre por sexo
labeled_poverty = pyeph.map_labels(population_poverty) # Etiquetado de las variables

# Cálculos de Mercado Laboral
labor_market = pyeph.LaborMarket(eph)
unemployment = labor_market.unemployment(group_by="REGION", div_by="PT") # Desempleo agrupado por region y dividiendo por Población Total
labeled_unemployment = pyeph.map_labels(unemployment) # Etiquetado de las variables

En español

import pyeph

# Obtención
eph = pyeph.obtener(data="eph", ano=2021, periodo=2, tipo_base='individual') # EPH individual
canastas = pyeph.obtener(data="canastas") # canasta basica total y alimentaria
adequi = pyeph.obtener(data="adulto-equivalente") # adulto equivalente

# Cálculos de ejemplo de pobreza
pobreza = pyeph.Pobreza(eph, canastas)
poblacion_pobre = pobreza.poblacion(agrupar_por='CH04') # Población pobre por sexo
poblacion_pobre_etiquetado = pyeph.etiquetar(poblacion_pobre) # Etiquetado de las variables

# Cálculos de Mercado Laboral
mercado_laboral = pyeph.MercadoLaboral(eph)
desempleo = mercado_laboral.desempleo(agrupar_por="REGION", div_por="PT") # Desempleo agrupado por region y dividiendo por Población Total
desempleo_etiquetado = pyeph.etiquetar(desempleo) # Etiquetado de las variables

Documentación

Link del sitio de la documentación


Agradecimientos

Dejamos aquí un especial agradecimiento al equipo de desarrollo de la librería EPH en R. Todo el amor para elles ❤️ y a Rami Argañaraz por armarnos el loguito 😻


⌨️ con ❤️

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyeph-1.4.0.tar.gz (61.1 kB view details)

Uploaded Source

Built Distribution

pyeph-1.4.0-py3-none-any.whl (63.3 kB view details)

Uploaded Python 3

File details

Details for the file pyeph-1.4.0.tar.gz.

File metadata

  • Download URL: pyeph-1.4.0.tar.gz
  • Upload date:
  • Size: 61.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.4 CPython/3.12.1 Linux/6.5.0-1025-azure

File hashes

Hashes for pyeph-1.4.0.tar.gz
Algorithm Hash digest
SHA256 03dcb828fd4ae7c2e383a27a6063444184209548c791952e59a8f4a696bfc87e
MD5 e9967d59dbc103e5f913412f9b4c7d40
BLAKE2b-256 b1ba2a668eba3221988105a3303d4159cb4a4e46822401daff040dc44ad06421

See more details on using hashes here.

File details

Details for the file pyeph-1.4.0-py3-none-any.whl.

File metadata

  • Download URL: pyeph-1.4.0-py3-none-any.whl
  • Upload date:
  • Size: 63.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.4 CPython/3.12.1 Linux/6.5.0-1025-azure

File hashes

Hashes for pyeph-1.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e32d36d3f391d23d4e081c15c984b3de89af4c004a2c06768fc1ea72d324031e
MD5 505a641098c3b1267393abedc26c6a66
BLAKE2b-256 bba4632529c3aa9fed5ce49f61071ce1d846a1b084b9b2e2b8dde6636e3504d0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page