Skip to main content

Django Querysets-esque implementation for Elasticsearch

Project description

# PyEQS [![Build Status](https://travis-ci.org/Yipit/pyeqs.svg?branch=master)](https://travis-ci.org/Yipit/pyeqs) [![Coverage Status](https://coveralls.io/repos/Yipit/pyeqs/badge.png)](https://coveralls.io/r/Yipit/pyeqs)

#### Python Elasticsearch QuerySets

A python library to simplify building complex Elasticsearch JSON queries. Based on the Django QuerySet API, backed by the [official python elasticsearch library](https://github.com/elasticsearch/elasticsearch-py). Supports Elasticsearch `1.0+`.

#### Current Development Status

Currently pre `v1.0`, so the API is not locked in. This project aims to follow [semantic versioning](http://semver.org/) once it reaches a stable API. The only issues may arise as the backend `elasticsearch-py` library locks its versions to *Elasticsearch* releases.

## Installation

```bash
pip install pyeqs
```

## Usage

#### Simple querying

```python
from pyeqs import QuerySet
qs = QuerySet("127.0.0.1", index="my_index")
print qs._query
"""
{
'query': {
'match_all': {}
}
}
"""
```

```python
from pyeqs import QuerySet
qs = QuerySet("127.0.0.1", query="cheese", index="my_index")
print qs._query
"""
{
'query': {
'query_string': {
'query': 'cheese'
}
}
}
"""
```

#### Filtering

```python
from pyeqs import QuerySet
from pyeqs.dsl import Term, Type
qs = QuerySet("127.0.0.1", index="my_index")
qs.filter(Term("foo", "bar"), operator="or").filter(Type("baz"))
print qs._query
"""
{
'query': {
'filtered': {
'filter': {
'or': [
{
'term': {
'foo': 'bar'
}
},
{
'type': {
'value': 'baz'
}
}
]
},
'query': {
'match_all': {}
}
}
}
}
"""
```

#### Boolean Filters

```python
from pyeqs import QuerySet, Bool
from pyeqs.dsl import Sort
qs = QuerySet("127.0.0.1", index="my_index")
b = Bool()
b.must(Term("foo", "bar"))
qs.filter(b)
```

#### Sorting

```python
from pyeqs import QuerySet
from pyeqs.dsl import Sort
qs = QuerySet("127.0.0.1", index="my_index")
qs.order_by(Sort("_id", order="desc"))
```

#### Scoring

```python
from pyeqs import QuerySet
from pyeqs.dsl import ScriptScore
qs = QuerySet("127.0.0.1", index="my_index")
qs.score(ScriptScore("score = foo + bar;", lang="mvel", params={"bar": 1}))
```

#### Wrapping Results

```python
from pyeqs import QuerySet
from pyeqs.dsl import Term
qs = QuerySet("127.0.0.1", index="my_index")
qs.filter(Term("foo", 1)
qs.wrapper(lambda x: x['_id'])
```

#### Limiting Returned Fields

```python
from pyeqs import QuerySet
qs = QuerySet("127.0.0.1", index="my_index")
qs.only('_id')
```

#### Reusing Querysets

```python
from pyeqs import QuerySet
from pyeqs.dsl import Terms, Term
qs = QuerySet("127.0.0.1", index="my_index")
qs.filter(Terms("foo", ["bar", "baz"]))

# Duplicate the Queryset and do more filters
only_bar = qs.objects.filter(Term("foo", "bar"))

only_baz = qs.objects.filter(Term("foo", "baz"))
```

#### Slicing Querysets

```python
from pyeqs import QuerySet
from pyeqs.dsl import Term
qs = QuerySet("127.0.0.1", index="my_index")
qs.filter(Term("foo", "bar"))
results = qs[0:10] # Uses from/size in the background
```

#### Iterating over Quersets

```python
from pyeqs import QuerySet
from pyeqs.dsl import Term
qs = QuerySet("127.0.0.1", index="my_index")
qs.filter(Term("foo", "bar"))
for result in qs:
print result['_source']
# Builds a cache of 10 results at a time and iterates
```

#### Getting Counts

```python
from pyeqs import QuerySet
from pyeqs.dsl import Term
qs = QuerySet("127.0.0.1", index="my_index")
qs.filter(Term("foo", "bar"))
qs.count() # None, since we haven't queried
qs[0:10]
qs.count() # Returns number of hits
```

## Alternatives

#### Python
* [ElasticUtils](http://elasticutils.readthedocs.org/en/latest/): A library by Mozilla uses a syntax leveraging built in &, | and ~ to construct queries.
* [Elasticsearch-dsl-py](https://github.com/elasticsearch/elasticsearch-dsl-py): A library by Elasticsearch that is similar and compatible with ElasticUtils.

#### Ruby
* [Plunk](https://github.com/elbii/plunk): A ruby library to allow you to write strings to queries that have more power than simple 'query string' requests

#### Haskell
* [Bloodhound](https://github.com/bitemyapp/bloodhound/): A basic Elasticsearch Client that also has the ability to leverage the languages built in operators to construct queries.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyeqs-0.3.1.tar.gz (7.1 kB view details)

Uploaded Source

File details

Details for the file pyeqs-0.3.1.tar.gz.

File metadata

  • Download URL: pyeqs-0.3.1.tar.gz
  • Upload date:
  • Size: 7.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pyeqs-0.3.1.tar.gz
Algorithm Hash digest
SHA256 d137fa8b3c90c1ad1e7c1303bf89990d27625f57b20cbf9df3c39c010933a596
MD5 b5d550301da5e7fd713780dacd5e48f3
BLAKE2b-256 0350e5c98bd38438df67e41ef1d3e6407485854c6ea0990af4cd5512ba9666c2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page