Skip to main content

Python bindings for ERFA

Project description

PyPI Status DOI 10.5281/zenodo.3940699 Travis CI Status Documentation Status

PyERFA is the Python wrapper for the ERFA library (Essential Routines for Fundamental Astronomy), a C library containing key algorithms for astronomy, which is based on the SOFA library published by the International Astronomical Union (IAU). All C routines are wrapped as Numpy universal functions, so that they can be called with scalar or array inputs.

The project is a split of astropy._erfa module, developed in the context of Astropy project, into a standalone package. It contains the ERFA C source code as a git submodule. The wrapping is done with help of the Jinja2 template engine.

If you use this package in your research, please cita it via DOI 10.5281/zenodo.3940699.

Installation instructions

The package can be installed from the package directory using a simple:

$ pip install .

and similarly a wheel can be created with:

$ pip wheel .

The package can be obtained from PyPI or directly from the git repository:

$ git clone --recursive https://github.com/liberfa/pyerfa/

Testing

For testing, one can install the packages together with its testing dependencies and then test it with:

$ pip install .[test]
$ pytest

Alternatively, one can use tox, which will set up a separate testing environment for you, with:

$ tox -e test

Usage

The package can be imported as erfa which has all ERFA ufuncs wrapped with python code that tallies errors and warnings. Also exposed are the constants defined by ERFA in erfam.h, as well as numpy.dtype corresponding to structures used by ERFA. Examples:

>>> import erfa
>>> erfa.jd2cal(2460000., [0, 1, 2, 3])
(array([2023, 2023, 2023, 2023], dtype=int32),
 array([2, 2, 2, 2], dtype=int32),
 array([24, 25, 26, 27], dtype=int32),
 array([0.5, 0.5, 0.5, 0.5]))
>>> erfa.plan94(2460000., [0, 1, 2, 3], 1)
array([([ 0.09083713, -0.39041392, -0.21797389], [0.02192341, 0.00705449, 0.00149618]),
       ([ 0.11260694, -0.38275202, -0.21613731], [0.02160375, 0.00826891, 0.00217806]),
       ([ 0.13401992, -0.37387798, -0.21361622], [0.0212094 , 0.00947838, 0.00286503]),
       ([ 0.15500031, -0.36379788, -0.21040601], [0.02073822, 0.01068061, 0.0035561 ])],
      dtype={'names': ['p', 'v'], 'formats': [('<f8', (3,)), ('<f8', (3,))], 'offsets': [0, 24], 'itemsize': 48, 'aligned': True})
>>> erfa.dt_pv
dtype([('p', '<f8', (3,)), ('v', '<f8', (3,))], align=True)
>>> erfa.dt_eraLDBODY
dtype([('bm', '<f8'), ('dl', '<f8'), ('pv', [('p', '<f8', (3,)), ('v', '<f8', (3,))])], align=True)
>>> erfa.DAYSEC
86400.0

It is also possible to use the ufuncs directly, though then one has to deal with the warning and error states explicitly. For instance, compare:

>>> erfa.jd2cal(-600000., [0, 1, 2, 3])
Traceback (most recent call last):
...
ErfaError: ERFA function "jd2cal" yielded 4 of "unacceptable date (Note 1)"
>>> erfa.ufunc.jd2cal(-600000., [0, 1, 2, 3])
(array([-1, -1, -1, -1], dtype=int32),
 ...,
 array([-1, -1, -1, -1], dtype=int32))

License

PyERFA is licensed under a 3-clause BSD style license - see the LICENSE.rst file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyerfa-2.0.0.2.tar.gz (813.8 kB view details)

Uploaded Source

Built Distributions

pyerfa-2.0.0.2-cp311-cp311-win_amd64.whl (347.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyerfa-2.0.0.2-cp311-cp311-win32.whl (340.4 kB view details)

Uploaded CPython 3.11 Windows x86

pyerfa-2.0.0.2-cp311-cp311-musllinux_1_1_x86_64.whl (755.1 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pyerfa-2.0.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (741.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyerfa-2.0.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (696.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyerfa-2.0.0.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (690.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyerfa-2.0.0.2-cp311-cp311-macosx_11_0_arm64.whl (333.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyerfa-2.0.0.2-cp311-cp311-macosx_10_9_x86_64.whl (342.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyerfa-2.0.0.2-cp310-cp310-win_amd64.whl (347.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyerfa-2.0.0.2-cp310-cp310-win32.whl (340.4 kB view details)

Uploaded CPython 3.10 Windows x86

pyerfa-2.0.0.2-cp310-cp310-musllinux_1_1_x86_64.whl (754.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pyerfa-2.0.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (741.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyerfa-2.0.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (696.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyerfa-2.0.0.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (690.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyerfa-2.0.0.2-cp310-cp310-macosx_11_0_arm64.whl (333.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyerfa-2.0.0.2-cp310-cp310-macosx_10_9_x86_64.whl (342.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyerfa-2.0.0.2-cp39-cp39-win_amd64.whl (347.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyerfa-2.0.0.2-cp39-cp39-win32.whl (340.4 kB view details)

Uploaded CPython 3.9 Windows x86

pyerfa-2.0.0.2-cp39-cp39-musllinux_1_1_x86_64.whl (754.0 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pyerfa-2.0.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (741.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyerfa-2.0.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (695.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyerfa-2.0.0.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (690.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyerfa-2.0.0.2-cp39-cp39-macosx_11_0_arm64.whl (333.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyerfa-2.0.0.2-cp39-cp39-macosx_10_9_x86_64.whl (342.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyerfa-2.0.0.2-cp38-cp38-win_amd64.whl (347.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyerfa-2.0.0.2-cp38-cp38-win32.whl (340.4 kB view details)

Uploaded CPython 3.8 Windows x86

pyerfa-2.0.0.2-cp38-cp38-musllinux_1_1_x86_64.whl (778.5 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pyerfa-2.0.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (749.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyerfa-2.0.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (703.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pyerfa-2.0.0.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (697.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyerfa-2.0.0.2-cp38-cp38-macosx_11_0_arm64.whl (333.3 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyerfa-2.0.0.2-cp38-cp38-macosx_10_9_x86_64.whl (342.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyerfa-2.0.0.2-cp37-cp37m-win_amd64.whl (347.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyerfa-2.0.0.2-cp37-cp37m-win32.whl (340.2 kB view details)

Uploaded CPython 3.7m Windows x86

pyerfa-2.0.0.2-cp37-cp37m-musllinux_1_1_x86_64.whl (749.1 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pyerfa-2.0.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (735.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyerfa-2.0.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (689.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pyerfa-2.0.0.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (683.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyerfa-2.0.0.2-cp37-cp37m-macosx_10_9_x86_64.whl (341.2 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyerfa-2.0.0.2.tar.gz.

File metadata

  • Download URL: pyerfa-2.0.0.2.tar.gz
  • Upload date:
  • Size: 813.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pyerfa-2.0.0.2.tar.gz
Algorithm Hash digest
SHA256 05370b7f0b4ca5a0caa845a1b6047259ba14d5608d1a18cd180049fff8c74b12
MD5 12452eefe2ff9b52379b003bb9a74b0b
BLAKE2b-256 0a4c54091d8b456c006dc0797c31cf7d7bbc1bf9929f79022ff3b480ee4d7764

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyerfa-2.0.0.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 347.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pyerfa-2.0.0.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d44ddafbb784b872bca8dc4ceb357293c99034b7f134d9aef8c4287d181d4c4e
MD5 f576fe6fa2ca7ae8fde5c1d1ce866a99
BLAKE2b-256 3f66aa309534c6d72cc447757642f616358ad68d3e4bb5ba82cd526032eb0622

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: pyerfa-2.0.0.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 340.4 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pyerfa-2.0.0.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 58a104acc67e31769d652b31284813dbf4bfbac1155e5ce0669a5465e6ecea28
MD5 df457dde900835b22f3b9c544610aeb4
BLAKE2b-256 e927db739fe572430d05aae516c71e78d861dea2459eb74dfc3cf0b353843f6b

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 014814fb5c8dcaf31328087fd9f86fe72c150d9ffb505f2f274316c0bf91caba
MD5 cfb93ca4759db2dac15f97f053a19c4a
BLAKE2b-256 68d240f943fa1427dd8818d1684018bc851d3ef95ca98cb591db554f9691e87c

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f6974df2305a95d63d6fa53b0f4ed31a161b6888178dd8ecf2fed147b0c0f296
MD5 fdd22af5ad9a4466170e19682ae8fc06
BLAKE2b-256 4b0eba731b1aa60f173622bac98c46773e50ff972fb3cccba00414d73b27f715

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d647650e50d478386906723523ee1094255c4e8f38a4f269fced3f03d575903f
MD5 ea1bcffaaee0c6a645110f24ff0d88ae
BLAKE2b-256 502880a96b3d70b315b9f557cb38bb4d925b8e8cfd67066a02a327eaf884be4f

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1d4c7be0627bf2d4d6f66c2ab07bd833c9523d86369321b5edad1e6fac47681b
MD5 ec2f9240ee3c8b7d81ac4cb82a1b63fc
BLAKE2b-256 72c3895a2a4d88df0e260de68de51db8cef1ec6b8c34cf858f6759d662152aac

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 31bd6e736b76aa99589b1d1d8b479e50a3ae980f046d7f06e93146159b4a8325
MD5 2289ef02d381b11b8391d4fa8ff78d19
BLAKE2b-256 2d7cc769ec5af28568e149b2ae427e8f35f3deb559fbd5483f35f9f6d6eb237c

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 31870b2b15cc49bd1216e8c12add22b5f8264f7e1a896d9d42ed0d2f6d8f140c
MD5 4706c9700fcd9ff85af2af1df460b241
BLAKE2b-256 33ca4ad2fe5646dc1289287768f742db5b41e3163ccb387d5b3ca2a5435120fa

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyerfa-2.0.0.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 347.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pyerfa-2.0.0.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 bebab4c389c674e48dd87963323c9bf36a75af1e8192ab4699fdfcfb52b3a5e8
MD5 47e1ea3d9ceb35dbd72f7aa1caa63e96
BLAKE2b-256 80d803ce4339f2930304877822a0ff91f6016c4bbc5ad747e05cad04ec5e295d

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyerfa-2.0.0.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 340.4 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pyerfa-2.0.0.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 975a040e698c07e332a92f3fbb5b1ba45d5c01435f92b7a2e41e2998af70cbfd
MD5 1dcdce6980a9e7d5ff0864b823f7aabb
BLAKE2b-256 5a8045c5361d39fa47b3d312b0cf2678eee8235d5d7da66c829bd9314788f304

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d678218d2fdd53d579be471f217b3b9ac5133f302c05760b744cfa797b42eb7c
MD5 6bf65220ec6c24d6b481379c6259225d
BLAKE2b-256 04f36ea28291b528c5030af0982792f74f5777e1fc6d5b414a4d0c713f7239f1

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 704b13d9f59e93705ec625a965263b4ddd70222988f20be3d6f9e556dedcbb0e
MD5 3ebfdf42ea8b5731cf60c1304008daff
BLAKE2b-256 f4a53d000f4c13d5d8e4c0d331bbeadfe5913e135012a537be01a994d61af099

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 85816ddd41e30f922ab00cb519ba39218b904698f8590750a1b69f21b106e2c5
MD5 80d68882365faa1117074dd8bb597ebc
BLAKE2b-256 59c7fd12e51064c06b76e5634db29255ea9d05b9c50f374ded2668e33f89eedb

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2611c8ccc5eb817c309b1629b8430f5f4d029913a531955ef7be6a9ebf2db35d
MD5 bac6a61d2c392ad340843cd5f08fb63a
BLAKE2b-256 9237d9c7889b25df9b7b88e3d266058fae9b4ed2d51b34b62c1dcda85ada6ea4

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c3e3058150bc6cdbf02adf2c266000431a7a42e6e98f05d0c98d5d4ff500506f
MD5 a98fe0f4fa05e9a4981485de1336243e
BLAKE2b-256 6e7ac0fc77b5a321f17800dcf6f83af7d2f9cf274f44333c75332d84e31cd136

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f6db8848c8d368b55f0e2f8a74c9bb4293dbfe947b7fa4f6220169f2ae502a44
MD5 0ba918917ecce748a314a53686289ac8
BLAKE2b-256 f8187f510ccde93902b5cc13740ad72a59a8cb65ea0b19c046e41d90a10e5800

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyerfa-2.0.0.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 347.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pyerfa-2.0.0.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d0001f25f72819c28d6f495624be0fdae66299d658609a40a1765d8a03e6d2a3
MD5 88c6ec1c50bd11c12e1c18aba6dd74e9
BLAKE2b-256 a00d5bbe5cc9484b1e4e49d0b55f433d83ed5d61ab4863ec3b5710443580e584

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyerfa-2.0.0.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 340.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pyerfa-2.0.0.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 d5b528dc22e42df7738bd0d3216eabf845b39121e3eca8059d43e132dfcaec88
MD5 e2224749a3f87720d648e11ca1f13c81
BLAKE2b-256 80acba5f4c96d38098e7f9e4b2b0e52aad447c6864e0b31b6c3ce6e748f5bbcc

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 efd66c138c7299260215674b42f4969cd34bfee1b4ceaa37b33f2a9d80015e18
MD5 08a7e14a05f91582c2bd77081845c10a
BLAKE2b-256 e5c820381c09b600f4b58274b9d2a35bb1014d58d14671f997a836994483a365

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0a9d4f423982c43ed7f25e4e625013c82e1b66e133a438b0a41f46be01938304
MD5 e82f4555d246aeeb60118f9c3bf40bd2
BLAKE2b-256 fbbc19dbd7354800302180d844a94edf81a09031de3f4362524d2e24ec1e2c48

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0fcac90692f92d501658743a2d58aebf0d845e68af610d74774eebc1916c3cb5
MD5 8e6f110373612c2c88e07dfed2a478b7
BLAKE2b-256 b63e2c41bd896506d0a03d57189062d2ec067014a569ff2f6557e0f6fcf90c40

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 01e56d53cbf4bb77f487c285c1177c5b69f36b5f5abcc40d4fce86208cca1a93
MD5 2057ebb1852df109d3d04bb4a3ebf1ad
BLAKE2b-256 bd5d02e38cdc51cf7c75a2addb3680265eee25394fc5fa5273e40d5d99f5dfb2

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ad3a3fb98b51bb63a63ddafba83fbb4ee791c2122a7cdaa592faa282838c60c9
MD5 cc3091b1823ea4505d91c847461fd4f3
BLAKE2b-256 988c0269152704beb28f365e290c6ab32b7233e48d0025779a5a7339adf76b1d

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5b272699c60919f38a97b46fb2ff622f94c36cd7aecb6f6210504e76206e6545
MD5 bfba53067770d2f6a43dc1a3c8124f0c
BLAKE2b-256 9152d77bd63edbbf96f0327a5fb7956596c32963f9276a4c1b219d90402ff92a

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyerfa-2.0.0.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 347.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pyerfa-2.0.0.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 fdbc0ad5c0dcb2e425332bf82ab928e9c2e441d2ca9a205972ee5fe1ffd9c5b5
MD5 b251c978e90dc145f5c7a01ab06fe876
BLAKE2b-256 bdf2e34eb34f2749fee17bf3b5b6124fb0229b6a1d803d1c7cbce79e7de55873

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyerfa-2.0.0.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 340.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pyerfa-2.0.0.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 ee7bf379d76f02a9c42f885a417d1fa3eb2fb743e5b686deeaf9c1fc69ca3b5e
MD5 48d7bf5443f4c2471b0e07bb08a94a52
BLAKE2b-256 390fc6d4ab438545beb85fb8e2552bcf75f26c4771783750c3f8e90630d45994

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0f76a89f382d57caae4703194a8ca7f8d99e0d8ee5cc3ab7889725b02f525c36
MD5 566296d6e0bfdd04e291baec8adcf790
BLAKE2b-256 4ad49223c130d63bb1c9fa9be034159cd6311f62ae84ed2c122c09eebfcccca5

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bc37154338ccb19a17951e06cbdd333fb0378a3107c649f7ccb5bfcf71224c3d
MD5 513bd4c37253f959e1d6e260e9e8bef9
BLAKE2b-256 938d4316f2cd7c0e0046faa81ff442f3677ba70025cd83e3f1a4f4ff52beaf26

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cf9bad7409e44b1d6728f4733d73596a48c8f848a7ffb1647ec7fc62c1e81c23
MD5 4a3d086940ee91af9c54ab39b560bf52
BLAKE2b-256 fdd847213234e07c5db8546419a30b8f9dcde1ac05780c6a678c3b5bed466388

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 28f7b60aa8924a84402cb35150a2922bc0178b00c6e98e1d1bcb9d4e8d415a96
MD5 959e916110d573d94ae20012f60fe286
BLAKE2b-256 55c18ec8b4e19004041bf209ead85b36fbca9b0b196b40913793016a0dba9cd8

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 acaa0d00de9f3d4f9a5a11f3b1b89e2aa970422616882c53b01fc348a51001cd
MD5 971ec4fdb38e2086ca2aab161b0ef466
BLAKE2b-256 3f81cd6498101c1e51fc3e46d98df97f6aad6e6fdb848161e904c2aa99b471a0

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c43673614b881d1fc5f1f7b287dcfc694461c221bbb653dd9037cc1a0c0845f6
MD5 b57d0f233716a8d49439026fda3be3a4
BLAKE2b-256 f451df71381828b1a8c8f2b5ba7056ad4c27e9957b7270200e037422b30e21a1

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyerfa-2.0.0.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 347.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pyerfa-2.0.0.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 97b745c3186a7380a8869b1305410d2b980cd5393f4d94f25b59c0278a54ed83
MD5 a876c47e9440e575cb363fba2873296e
BLAKE2b-256 cc5cddd40160be392c30b2a0350dd70cc9528a08aaba967e31311fc7f56d4395

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyerfa-2.0.0.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 340.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pyerfa-2.0.0.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 53faeb44a9e7d8dbb95e07e23dfea3fc9dd2f9b8f9843eb8daa60b9a6234a50d
MD5 b4e6700f541a677fd76036a2d6cbd37c
BLAKE2b-256 be9149e29adfb723b77a2c3fc1ec9bc08b6b0dc6bd9965537b274dd6116ce849

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6d3b93389657fe133c09dba6d6715d3d79dda637fa3c5a99c77cd262fd923af5
MD5 d05756db12f86f9a942e14d7c1ce024c
BLAKE2b-256 02f421631a29aa4953feeffc2ccb38370186d6a0210221039eb290cfc58c7564

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e5d1aba7dbaad83b9b7bc19c9396f4ebbe7c52fe31bc840a171e0e2887bcd074
MD5 8948cfc9bad707bb3040f83e81353478
BLAKE2b-256 a61551711a6146b45e52000adf43910f552fe5995325de462d7ce141f7ce1be6

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 35e747c6bf3894ac31075d4fab9865dc1f8d10de6af9ad831effe31ac17f943c
MD5 0f0dab356609f16b24aea4df54319062
BLAKE2b-256 a7f320d671300cef2049666510a8b73ea6f3779c696772123ee7f3db80f1291b

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 03535d39a7982731538a41a10d7943eaf452999825700b99abb5a5f8ec88eae6
MD5 bd2dba098416b8a89f69ba4355c6dcc1
BLAKE2b-256 213e61be8f6e25388a66248145e5b891172d6ad52f34067a7ba97847094429f3

See more details on using hashes here.

File details

Details for the file pyerfa-2.0.0.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyerfa-2.0.0.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b819830ede814db892e463b51492bfdd83a08a7b2953211aa58599865f7c119d
MD5 fc5c84576e4fa74e3ca01625f5a58c3b
BLAKE2b-256 3fcf5ca1f9c6e2828d14e22c955e91d743f7b02575f415f79e842f5992130d73

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page