Error propagation and statistical analysis for Monte Carlo simulations
Project description
pyerrors
pyerrors
is a python framework for error computation and propagation of Markov chain Monte Carlo data from lattice field theory and statistical mechanics simulations.
- Documentation: https://fjosw.github.io/pyerrors/pyerrors.html
- Examples: https://github.com/fjosw/pyerrors/tree/develop/examples
- Ask a question: https://github.com/fjosw/pyerrors/discussions/new?category=q-a
- Changelog: https://github.com/fjosw/pyerrors/blob/develop/CHANGELOG.md
- Bug reports: https://github.com/fjosw/pyerrors/issues
Installation
Install the most recent release using pip and pypi:
python -m pip install pyerrors # Fresh install
python -m pip install -U pyerrors # Update
Install the most recent release using conda and conda-forge:
conda install -c conda-forge pyerrors # Fresh install
conda update -c conda-forge pyerrors # Update
Contributing
We appreciate all contributions to the code, the documentation and the examples. If you want to get involved please have a look at our contribution guideline.
Citing pyerrors
If you use pyerrors
for research that leads to a publication we suggest citing the following papers:
- Fabian Joswig, Simon Kuberski, Justus T. Kuhlmann, Jan Neuendorf, pyerrors: a python framework for error analysis of Monte Carlo data. Comput.Phys.Commun. 288 (2023) 108750.
- Ulli Wolff, Monte Carlo errors with less errors. Comput.Phys.Commun. 156 (2004) 143-153, Comput.Phys.Commun. 176 (2007) 383 (erratum).
- Alberto Ramos, Automatic differentiation for error analysis of Monte Carlo data. Comput.Phys.Commun. 238 (2019) 19-35.
- Stefan Schaefer, Rainer Sommer, Francesco Virotta, Critical slowing down and error analysis in lattice QCD simulations. Nucl.Phys.B 845 (2011) 93-119.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pyerrors-2.13.0.tar.gz
.
File metadata
- Download URL: pyerrors-2.13.0.tar.gz
- Upload date:
- Size: 104.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a058a7ddc7ee9e1a5efbb88b8ac3c317290d7138d0f08f78273ee882e842faf1 |
|
MD5 | 7ab89c4a23518601c9fbb79fc67c02c2 |
|
BLAKE2b-256 | 0cd15f36ef474806dfa9d1b255ad95f2531b4f17ee48547ddba111b3ddf7b2c0 |
Provenance
The following attestation bundles were made for pyerrors-2.13.0.tar.gz
:
Publisher:
release.yml
on fjosw/pyerrors
-
Statement type:
https://in-toto.io/Statement/v1
- Predicate type:
https://docs.pypi.org/attestations/publish/v1
- Subject name:
pyerrors-2.13.0.tar.gz
- Subject digest:
a058a7ddc7ee9e1a5efbb88b8ac3c317290d7138d0f08f78273ee882e842faf1
- Sigstore transparency entry: 146258963
- Sigstore integration time:
- Predicate type:
File details
Details for the file pyerrors-2.13.0-py3-none-any.whl
.
File metadata
- Download URL: pyerrors-2.13.0-py3-none-any.whl
- Upload date:
- Size: 112.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c47e3647d857fe43c7714cba7c3dfc4395055c4ccac7a0573297a44fc14bf0a2 |
|
MD5 | cf610048eb1faf3941b24b55e965851e |
|
BLAKE2b-256 | 2e6d2c82584b92f2f12bf9ed67fb0c1439cb88cce6cb5be07831febacdfe9a3c |
Provenance
The following attestation bundles were made for pyerrors-2.13.0-py3-none-any.whl
:
Publisher:
release.yml
on fjosw/pyerrors
-
Statement type:
https://in-toto.io/Statement/v1
- Predicate type:
https://docs.pypi.org/attestations/publish/v1
- Subject name:
pyerrors-2.13.0-py3-none-any.whl
- Subject digest:
c47e3647d857fe43c7714cba7c3dfc4395055c4ccac7a0573297a44fc14bf0a2
- Sigstore transparency entry: 146258964
- Sigstore integration time:
- Predicate type: