Structured error handling framework for Python
Project description
PyErrorSchema
PyErrorSchema is a structured error handling framework for Python that helps developers create consistent, schema-based error messages across applications.
Installation
The source code is currently hosted on GitHub at PyErrorSchema.
Binary installers for the latest released version are available at the Python Package Index (PyPI).
pip install pyerrorschema
Key Features
- Structured Error Schemas: Define consistent error formats across your application
- Pre-defined Error Types: Includes common error types like database errors, file errors, validation errors
- Framework Integrations: Specialized support for FastAPI with location tracking
- Exception Mapping: Automatically map Python exceptions to appropriate error schemas
- Hierarchical Error Organization: Group related errors with specialized subclasses
- Customizable Error Messages: Format user-friendly error messages with context information
- Frontend/Backend Message Separation: Support for different messages for end-users vs developers (in FastAPI version)
Basic Usage
from pyerrorschema import ErrorSchema
# Create a basic error
error = ErrorSchema.database_error(
msg="Failed to connect to the database"
)
# Convert to dictionary for API responses
error_dict = error.to_dict()
print(error_dict)
# Output: {'type': 'database_error', 'msg': 'Database error: failed to connect to the database'}
FastAPI Integration
from pyerrorschema import FastAPIErrorSchema
# Create a FastAPI-specific error
error = FastAPIErrorSchema.validation_error(
msg="Invalid input data",
ui_msg="Please check your input and try again", # User-friendly message
loc=["body", "user", "email"], # Location of the error
input={"email": "invalid-email"} # Input that caused the error
)
# Convert to dictionary for API responses
print(error.to_dict())
# Output: {'type': 'validation_error', 'msg': 'Invalid input data', 'loc': ['body', 'user', 'email'], 'input': {'email': 'invalid-email'}}
Working with File Errors
from pyerrorschema import ErrorSchema
# Use specialized File error class
file_error = ErrorSchema.File.not_found(path="/path/to/config.json")
print(file_error.msg)
# Output: "File 'config.json' not found."
# Automatically detects directories
dir_error = ErrorSchema.File.not_found(path="/path/to/data/")
print(dir_error.msg)
# Output: "Directory 'data/' not found."
Exception Mapping
from pyerrorschema import ErrorSchema
try:
# Some code that might raise an exception
with open("nonexistent_file.txt", "r") as f:
content = f.read()
except Exception as e:
# Map the exception to an error schema
error = ErrorSchema.from_exception(e)
print(error.to_dict())
# Output: {'type': 'file_error', 'msg': 'File error: [Errno 2] No such file or directory: 'nonexistent_file.txt''}
Error Groups
Sometimes you need to collect multiple errors into a single group for easier management or to send them all in a single API response. You can use ErrGroup or its FastAPI-specific variant FastAPIErrGroup to aggregate error schemas. These groups work very similarly to Python lists, offering convenient methods to append, extend, or clear errors.
For example, you can create a group of FastAPI error schemas as follows:
from pyerrorschema import FastAPIErrorSchema, FastAPIErrGroup
err_group = FastAPIErrGroup()
err_group.append(FastAPIErrorSchema.File.not_found(path="test.text"))
err_group.append(FastAPIErrorSchema.DB.no_results("querying the database"))
print(err_group)
Which will output:
FastAPIErrGroup(
FastAPIErrorSchema(
type='file_error',
msg="File error: file 'test.text' not found.",
ui_msg="File 'test.text' not found.",
loc=[],
input={}
),
FastAPIErrorSchema(
type='database_error',
msg='Database error: no results found while querying the database.',
ui_msg='No results found while querying the database.',
loc=[],
input={}
)
)
The usage of groups is similar to that of a list:
.append: Append a single error schema instance to the group..extend: Append a list of error schema instances into the group..clear: Remove all error schemas from the group.- Index Access and Assignment: Access or update individual errors by index.
Available Error Types
PyErrorSchema provides a range of built-in error types:
database_error: For database operation failuresfile_error: For file I/O issuesruntime_error: For general runtime problemstimeout_error: For timeoutsparse_error: For parsing failuresvalue_error: For invalid valuesvalidation_error: For input validation issues (FastAPI)docker_error: For Docker-related issues (FastAPI)
Each error type has specialized factory methods that create appropriate error messages with context.
Why Use PyErrorSchema?
- Consistency: Ensure a consistent error format across your application
- Maintainability: Centralize error handling logic
- Flexibility: Adapt to different frameworks and use cases
- User Experience: Create better error messages for your users
- Developer Experience: Make debugging easier with structured error information
License
This project is licensed under the BSD License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file pyerrorschema-2.1.0.tar.gz.
File metadata
- Download URL: pyerrorschema-2.1.0.tar.gz
- Upload date:
- Size: 19.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.8.18
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
871c91ebca5e9ecc7092314619528e702b38e988f1621909891ef0318ca707a4
|
|
| MD5 |
8493d6854918faa3f6507a18bc3b8b06
|
|
| BLAKE2b-256 |
4ddf22dadd3bc3eff051b7fea139c2ce260a27075c8eddc3a5cd8305fd149568
|
File details
Details for the file pyerrorschema-2.1.0-py3-none-any.whl.
File metadata
- Download URL: pyerrorschema-2.1.0-py3-none-any.whl
- Upload date:
- Size: 21.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.8.18
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
4ab3b9e7ef1eaa9cc4e24b9d4da03cb5e62fa6751c549cac9866630121485ed5
|
|
| MD5 |
e5030d0dd3dbd2316e64e24edf49734c
|
|
| BLAKE2b-256 |
eb54b5ff8169f87e915e11472551ced59553ffc41d9f382f44abd31255d45fdf
|