Skip to main content

A wrapper library to read, manipulate and write data format

Project description

================================================================================
pyexcel-yuri - Let you focus on data, instead of xlsx format
================================================================================

**pyexcel-yuri** is a tiny wrapper library to read, manipulate and write data in xlsx and xlsm format using `read_only` mode reader, `write_only` mode writer from Xlsxwriter. You are likely to use it with `pyexcel <https://github.com/pyexcel/pyexcel>`__.

Please note:

1. `auto_detect_int` flag will not take effect because openpyxl detect integer in python 3 by default.
2. `skip_hidden_row_and_column` will get a penalty where `read_only` mode cannot be used.



Known constraints
==================

Fonts, colors and charts are not supported.

Installation
================================================================================


You can install pyexcel-yuri via pip:

.. code-block:: bash

$ pip install pyexcel-yuri


or clone it and install it:

.. code-block:: bash

$ git clone https://github.com/Yuri-x/pyexcel-yuri.git
$ cd pyexcel-yuri
$ python setup.py install


Usage
================================================================================

As a standalone library
--------------------------------------------------------------------------------

Write to an xlsx file
********************************************************************************



Here's the sample code to write a dictionary to an xlsx file:

.. code-block:: python

>>> from pyexcel_xlsxy import save_data
>>> data = OrderedDict() # from collections import OrderedDict
>>> data.update({"Sheet 1": [[1, 2, 3], [4, 5, 6]]})
>>> data.update({"Sheet 2": [["row 1", "row 2", "row 3"]]})
>>> save_data("your_file.xlsx", data)


Read from an xlsx file
********************************************************************************

Here's the sample code:

.. code-block:: python

>>> from pyexcel_xlsxy import get_data
>>> data = get_data("your_file.xlsx")
>>> import json
>>> print(json.dumps(data))
{"Sheet 1": [[1, 2, 3], [4, 5, 6]], "Sheet 2": [["row 1", "row 2", "row 3"]]}


Write an xlsx to memory
********************************************************************************

Here's the sample code to write a dictionary to an xlsx file:

.. code-block:: python

>>> from pyexcel_xlsxy import save_data
>>> data = OrderedDict()
>>> data.update({"Sheet 1": [[1, 2, 3], [4, 5, 6]]})
>>> data.update({"Sheet 2": [[7, 8, 9], [10, 11, 12]]})
>>> io = StringIO()
>>> save_data(io, data)
>>> # do something with the io
>>> # In reality, you might give it to your http response
>>> # object for downloading




Read from an xlsx from memory
********************************************************************************

Continue from previous example:

.. code-block:: python

>>> # This is just an illustration
>>> # In reality, you might deal with xlsx file upload
>>> # where you will read from requests.FILES['YOUR_XLSX_FILE']
>>> data = get_data(io)
>>> print(json.dumps(data))
{"Sheet 1": [[1, 2, 3], [4, 5, 6]], "Sheet 2": [[7, 8, 9], [10, 11, 12]]}


Pagination feature
********************************************************************************



Let's assume the following file is a huge xlsx file:

.. code-block:: python

>>> huge_data = [
... [1, 21, 31],
... [2, 22, 32],
... [3, 23, 33],
... [4, 24, 34],
... [5, 25, 35],
... [6, 26, 36]
... ]
>>> sheetx = {
... "huge": huge_data
... }
>>> save_data("huge_file.xlsx", sheetx)

And let's pretend to read partial data:

.. code-block:: python

>>> partial_data = get_data("huge_file.xlsx", start_row=2, row_limit=3)
>>> print(json.dumps(partial_data))
{"huge": [[3, 23, 33], [4, 24, 34], [5, 25, 35]]}

And you could as well do the same for columns:

.. code-block:: python

>>> partial_data = get_data("huge_file.xlsx", start_column=1, column_limit=2)
>>> print(json.dumps(partial_data))
{"huge": [[21, 31], [22, 32], [23, 33], [24, 34], [25, 35], [26, 36]]}

Obvious, you could do both at the same time:

.. code-block:: python

>>> partial_data = get_data("huge_file.xlsx",
... start_row=2, row_limit=3,
... start_column=1, column_limit=2)
>>> print(json.dumps(partial_data))
{"huge": [[23, 33], [24, 34], [25, 35]]}

As a pyexcel plugin
--------------------------------------------------------------------------------

No longer, explicit import is needed since pyexcel version 0.2.2. Instead,
this library is auto-loaded. So if you want to read data in xlsx format,
installing it is enough.


Reading from an xlsx file
********************************************************************************

Here is the sample code:

.. code-block:: python

>>> import pyexcel as pe
>>> sheet = pe.get_book(file_name="your_file.xlsx")
>>> sheet
Sheet 1:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
Sheet 2:
+-------+-------+-------+
| row 1 | row 2 | row 3 |
+-------+-------+-------+


Writing to an xlsx file
********************************************************************************

Here is the sample code:

.. code-block:: python

>>> sheet.save_as("another_file.xlsx")


Reading from a IO instance
********************************************************************************

You got to wrap the binary content with stream to get xlsx working:

.. code-block:: python

>>> # This is just an illustration
>>> # In reality, you might deal with xlsx file upload
>>> # where you will read from requests.FILES['YOUR_XLSX_FILE']
>>> xlsxfile = "another_file.xlsx"
>>> with open(xlsxfile, "rb") as f:
... content = f.read()
... r = pe.get_book(file_type="xlsx", file_content=content)
... print(r)
...
Sheet 1:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
Sheet 2:
+-------+-------+-------+
| row 1 | row 2 | row 3 |
+-------+-------+-------+


Writing to a StringIO instance
********************************************************************************

You need to pass a StringIO instance to Writer:

.. code-block:: python

>>> data = [
... [1, 2, 3],
... [4, 5, 6]
... ]
>>> io = StringIO()
>>> sheet = pe.Sheet(data)
>>> io = sheet.save_to_memory("xlsx", io)
>>> # then do something with io
>>> # In reality, you might give it to your http response
>>> # object for downloading


License
================================================================================

New BSD License

Developer guide
==================

Development steps for code changes

#. git clone https://github.com/pyexcel/pyexcel-xlsx.git
#. cd pyexcel-xlsx

Upgrade your setup tools and pip. They are needed for development and testing only:

#. pip install --upgrade setuptools pip

Then install relevant development requirements:

#. pip install -r rnd_requirements.txt # if such a file exists
#. pip install -r requirements.txt
#. pip install -r tests/requirements.txt

Once you have finished your changes, please provide test case(s), relevant documentation
and update CHANGELOG.rst.

.. note::

As to rnd_requirements.txt, usually, it is created when a dependent
library is not released. Once the dependecy is installed
(will be released), the future
version of the dependency in the requirements.txt will be valid.


How to test your contribution
------------------------------

Although `nose` and `doctest` are both used in code testing, it is adviable that unit tests are put in tests. `doctest` is incorporated only to make sure the code examples in documentation remain valid across different development releases.

On Linux/Unix systems, please launch your tests like this::

$ make

On Windows systems, please issue this command::

> test.bat

How to update test environment and update documentation
---------------------------------------------------------

Additional steps are required:

#. pip install moban
#. git clone https://github.com/moremoban/setupmobans.git # generic setup
#. git clone https://github.com/pyexcel/pyexcel-commons.git commons
#. make your changes in `.moban.d` directory, then issue command `moban`

What is pyexcel-commons
---------------------------------

Many information that are shared across pyexcel projects, such as: this developer guide, license info, etc. are stored in `pyexcel-commons` project.

What is .moban.d
---------------------------------

`.moban.d` stores the specific meta data for the library.

Acceptance criteria
-------------------

#. Has Test cases written
#. Has all code lines tested
#. Passes all Travis CI builds
#. Has fair amount of documentation if your change is complex
#. Please update CHANGELOG.rst
#. Please add yourself to CONTRIBUTORS.rst
#. Agree on NEW BSD License for your contribution



Change log
================================================================================

0.0.3 - 08.08.2018
--------------------------------------------------------------------------------

Updated
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

#. Fix merged cells

0.0.2 - 07.08.2018
--------------------------------------------------------------------------------

Updated
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

#. Fix stream type

0.0.1 - 06.08.2018
--------------------------------------------------------------------------------

Added
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

#. Init Commit


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pyexcel-yuri, version 0.0.3
Filename, size File type Python version Upload date Hashes
Filename, size pyexcel_yuri-0.0.3-py2.py3-none-any.whl (6.5 kB) File type Wheel Python version 3.6 Upload date Hashes View
Filename, size pyexcel-yuri-0.0.3.tar.gz (12.2 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page