Skip to main content

Python client library for Extrica

Project description

PyExtrica Library for Extrica Product

PyExtrica allows you to query and transform data in Extrica (Data To AI) platform directly without having to download the data locally. This library provides seamless access to the Extrica platform, allowing users to execute SQL queries and retrieve metadata such as catalog names, schema names, table names, and column information.

Getting Started

Installation

You can install PyExtrica via pip:

pip install pyextrica

Usage

To start using PyExtrica, you first need to import the PyExtricaFunctions module:

from pyextrica import PyExtricaFunctions

Connecting to Extrica

To connect to the Extrica platform, use the extrica_engine method:

from pyextrica import PyExtricaFunctions

# Define connection parameters
user_email = "your_email@example.com"
password = "your_password"
host = "host"
port = 1234 
catalog = "your_catalog"
platform = "data_sources"  # Platform should be either "data_products" or "data_sources"

# Establish connection to Extrica
engine = PyExtricaFunctions.extrica_engine(f"pyextrica://{user_email}:{password}@{host}:{port}/{catalog}?platform={platform}")

Using SQL

You can execute SQL queries using the execute_sql_query method:

sql_query = """
    SELECT column1, column2 FROM table_name LIMIT 10
"""

result = PyExtricaFunctions.execute_sql_query(engine, sql_query)

Replace sql_query with your desired SQL query string.

Querying Data

import pandas as pd

# Execute query and store result in DataFrame
df = pd.DataFrame(result, columns=['column1', 'column2'])
print(df.head())

# Perform DataFrame operations
# Example: Filter DataFrame
filtered_df = df[df['column1'] > 100]
print(filtered_df.head())

DataFrame Aggregation

# Example: Aggregating DataFrame
aggregated_df = df.groupby('column1').agg({'column2': 'sum'}).reset_index()
print(aggregated_df.head())

DataFrame Join

sql_query2 = """
    SELECT column3, column4 FROM second_table LIMIT 10
"""
result2 = PyExtricaFunctions.execute_sql_query(engine, sql_query2)
df2 = pd.DataFrame(result2, columns=['column3', 'column4'])

# Join DataFrames
joined_df = df.merge(df2, on='common_column')
print(joined_df.head())

Available Methods

PyExtrica provides the following methods for interacting with the Extrica platform:

  • extrica_engine: Connects to the Extrica platform.
  • execute_sql_query: Executes SQL queries.
  • get_catalog_names: Retrieves catalog names. (Requires platform=data_products for data products or platform=data_sources for data sources). For data products, catalog name represents the domain name, and schema name represents the subdomain name. For data sources, it is similar to Trino catalog and schema.
  • get_schema_names: Retrieves schema names. (Requires platform=data_products for data products or platform=data_sources for data sources)
  • get_table_names: Retrieves table names. (Requires platform=data_products for data products or platform=data_sources for data sources)
  • get_table_columns: Retrieves column information for a specified table. (Requires platform=data_products for data products or platform=data_sources for data sources)
# Retrieve catalog names
catalogs = PyExtricaFunctions.get_catalog_names(engine)
print("Catalogs:", catalogs)

# Retrieve schema names
schemas = PyExtricaFunctions.get_schema_names(engine)
print("Schemas:", schemas)

# Retrieve table names
tables = PyExtricaFunctions.get_table_names(engine, schema='schema_name')
print("Tables:", tables)

# Retrieve columns information for a table
columns_info = PyExtricaFunctions.get_table_columns(engine, schema='schema_name', table_name='table_name')
print("Columns Information:", columns_info)

Supported Operations

DML operations are only supported for Data Sources and not for Data Products, while DDL operations are supported by both Data Sources and Data Products in PyExtrica.

Example of DML Query

# Example of executing a DML query
dml_query = """
    INSERT INTO table_name (column1, column2) VALUES (value1, value2)
"""

result = PyExtricaFunctions.execute_sql_query(engine, dml_query)
print(result)  

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyextrica-17.2.2.tar.gz (39.9 kB view details)

Uploaded Source

Built Distribution

pyextrica-17.2.2-py3-none-any.whl (42.3 kB view details)

Uploaded Python 3

File details

Details for the file pyextrica-17.2.2.tar.gz.

File metadata

  • Download URL: pyextrica-17.2.2.tar.gz
  • Upload date:
  • Size: 39.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.7

File hashes

Hashes for pyextrica-17.2.2.tar.gz
Algorithm Hash digest
SHA256 9ef292485a699b80348279aceb194257574c6dc28abb1400d58ec71a613301f8
MD5 b751c7db8763ec2b85d913fe2ae3623d
BLAKE2b-256 78a70e3c43b3e4646a534ec7140aa436dcb86252d1cc59541768563ac0659096

See more details on using hashes here.

File details

Details for the file pyextrica-17.2.2-py3-none-any.whl.

File metadata

  • Download URL: pyextrica-17.2.2-py3-none-any.whl
  • Upload date:
  • Size: 42.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.7

File hashes

Hashes for pyextrica-17.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 8973e6cc5ee83649a135b520493e3b0c18247e033d5e53d924f0b08188b00acb
MD5 084ef6772727e929965361b8615b5ac6
BLAKE2b-256 67601b1dff52158818a1735077a7d8e06f10752018b965dc64e9bd9403a384c0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page