Skip to main content

Python client library for Extrica

Project description

PyExtrica Library for Extrica Product

PyExtrica allows you to query and transform data in Extrica (Data To AI) platform directly without having to download the data locally. This library provides seamless access to the Extrica platform, allowing users to execute SQL queries and retrieve metadata such as catalog names, schema names, table names, and column information.

Getting Started

Installation

You can install PyExtrica via pip:

pip install pyextrica

Usage

To start using PyExtrica, you first need to import the PyExtricaFunctions module:

from pyextrica import PyExtricaFunctions

Connecting to Extrica

To connect to the Extrica platform, use the extrica_engine method:

from pyextrica import PyExtricaFunctions

# Define connection parameters
user_email = "your_email@example.com"
password = "your_password"
host = "host"
port = 1234 
catalog = "your_catalog"
platform = "data_sources"  # Platform should be either "data_products" or "data_sources"

# Establish connection to Extrica
engine = PyExtricaFunctions.extrica_engine(f"pyextrica://{user_email}:{password}@{host}:{port}/{catalog}?platform={platform}")

Using SQL

You can execute SQL queries using the execute_sql_query method:

sql_query = """
    SELECT column1, column2 FROM table_name LIMIT 10
"""

result = PyExtricaFunctions.execute_sql_query(engine, sql_query)

Replace sql_query with your desired SQL query string.

Querying Data

import pandas as pd

# Execute query and store result in DataFrame
df = pd.DataFrame(result, columns=['column1', 'column2'])
print(df.head())

# Perform DataFrame operations
# Example: Filter DataFrame
filtered_df = df[df['column1'] > 100]
print(filtered_df.head())

DataFrame Aggregation

# Example: Aggregating DataFrame
aggregated_df = df.groupby('column1').agg({'column2': 'sum'}).reset_index()
print(aggregated_df.head())

DataFrame Join

sql_query2 = """
    SELECT column3, column4 FROM second_table LIMIT 10
"""
result2 = PyExtricaFunctions.execute_sql_query(engine, sql_query2)
df2 = pd.DataFrame(result2, columns=['column3', 'column4'])

# Join DataFrames
joined_df = df.merge(df2, on='common_column')
print(joined_df.head())

Available Methods

PyExtrica provides the following methods for interacting with the Extrica platform:

  • extrica_engine: Connects to the Extrica platform. execute_sql_query: Executes SQL queries.
  • get_catalog_names: Retrieves catalog names. (Requires platform=data_products for data products or platform=data_sources for data sources). For data products, catalog name represents the domain name, and schema name represents the subdomain name. For data sources, it is similar to Trino catalog and schema.
  • get_schema_names: Retrieves schema names. (Requires platform=data_products for data products or platform=data_sources for data sources)
  • get_table_names: Retrieves table names. (Requires platform=data_products for data products or platform=data_sources for data sources)
  • get_table_columns: Retrieves column information for a specified table. (Requires platform=data_products for data products or platform=data_sources for data sources)
# Retrieve catalog names
catalogs = PyExtricaFunctions.get_catalog_names(engine)
print("Catalogs:", catalogs)

# Retrieve schema names
schemas = PyExtricaFunctions.get_schema_names(engine)
print("Schemas:", schemas)

# Retrieve table names
tables = PyExtricaFunctions.get_table_names(engine, schema='schema_name')
print("Tables:", tables)

# Retrieve columns information for a table
columns_info = PyExtricaFunctions.get_table_columns(engine, schema='schema_name', table_name='table_name')
print("Columns Information:", columns_info)

Supported Operations

DML operations are only supported for Data Sources and not for Data Products, while DDL operations are supported by both Data Sources and Data Products in PyExtrica.

Example of DML Query

# Example of executing a DML query
dml_query = """
    INSERT INTO table_name (column1, column2) VALUES (value1, value2)
"""

result = PyExtricaFunctions.execute_sql_query(engine, dml_query)
print(result)  

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyextrica-17.2.0.tar.gz (38.4 kB view details)

Uploaded Source

Built Distribution

pyextrica-17.2.0-py3-none-any.whl (40.7 kB view details)

Uploaded Python 3

File details

Details for the file pyextrica-17.2.0.tar.gz.

File metadata

  • Download URL: pyextrica-17.2.0.tar.gz
  • Upload date:
  • Size: 38.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.7

File hashes

Hashes for pyextrica-17.2.0.tar.gz
Algorithm Hash digest
SHA256 37aac144a629a5f28c8692fc9898ed7f97c22cb4dc1ca9466e6c1551a8cb74e0
MD5 e72651b88bd74248a88baf31fff9908d
BLAKE2b-256 7334c69b08847270d4c2e1af2517ede0cbed0b07eda2f319fc2f7622c9b9b80d

See more details on using hashes here.

File details

Details for the file pyextrica-17.2.0-py3-none-any.whl.

File metadata

  • Download URL: pyextrica-17.2.0-py3-none-any.whl
  • Upload date:
  • Size: 40.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.7

File hashes

Hashes for pyextrica-17.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 0e789ed9678096d5e1eeb97e1965f6c7823aa26fa721998b7052206ceb00d118
MD5 db55af9ddebdb70511aa8573b49b3224
BLAKE2b-256 9368cfd76ebe0048ff928e183c6f8f16be91cb56da20f092c776596c5c6fa1b2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page