Face related toolkit
Project description
FACER
Face related toolkit. This repo is still under construction to include more models.
Updates
- [14/05/2023] Face attribute recognition model trained on CelebA is available, check it out here.
- [04/05/2023] Face alignment model trained on IBUG300W, AFLW19, WFLW dataset is available, check it out here.
- [27/04/2023] Face parsing model trained on CelebM dataset is available, check it out here.
Install
The easiest way to install it is using pip:
pip install git+https://github.com/FacePerceiver/facer.git@main
No extra setup needs, pretrained weights will be downloaded automatically.
If you have trouble install from source, you can try install from PyPI:
pip install pyfacer
the PyPI version is not guaranteed to be the latest version, but we will try to keep it up to date.
Face Detection
We simply wrap a retinaface detector for easy usage.
import facer
image = facer.hwc2bchw(facer.read_hwc('data/twogirls.jpg')).to(device=device) # image: 1 x 3 x h x w
face_detector = facer.face_detector('retinaface/mobilenet', device=device)
with torch.inference_mode():
faces = face_detector(image)
facer.show_bchw(facer.draw_bchw(image, faces))
Check this notebook for full example.
Please consider citing
@inproceedings{deng2020retinaface,
title={Retinaface: Single-shot multi-level face localisation in the wild},
author={Deng, Jiankang and Guo, Jia and Ververas, Evangelos and Kotsia, Irene and Zafeiriou, Stefanos},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={5203--5212},
year={2020}
}
Face Parsing
We wrap the FaRL models for face parsing.
import torch
import facer
device = 'cuda' if torch.cuda.is_available() else 'cpu'
image = facer.hwc2bchw(facer.read_hwc('data/twogirls.jpg')).to(device=device) # image: 1 x 3 x h x w
face_detector = facer.face_detector('retinaface/mobilenet', device=device)
with torch.inference_mode():
faces = face_detector(image)
face_parser = facer.face_parser('farl/lapa/448', device=device) # optional "farl/celebm/448"
with torch.inference_mode():
faces = face_parser(image, faces)
seg_logits = faces['seg']['logits']
seg_probs = seg_logits.softmax(dim=1) # nfaces x nclasses x h x w
n_classes = seg_probs.size(1)
vis_seg_probs = seg_probs.argmax(dim=1).float()/n_classes*255
vis_img = vis_seg_probs.sum(0, keepdim=True)
facer.show_bhw(vis_img)
facer.show_bchw(facer.draw_bchw(image, faces))
Check this notebook for full example.
Please consider citing
@inproceedings{zheng2022farl,
title={General facial representation learning in a visual-linguistic manner},
author={Zheng, Yinglin and Yang, Hao and Zhang, Ting and Bao, Jianmin and Chen, Dongdong and Huang, Yangyu and Yuan, Lu and Chen, Dong and Zeng, Ming and Wen, Fang},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={18697--18709},
year={2022}
}
Face Alignment
We wrap the FaRL models for face alignment.
import torch
import cv2
from matplotlib import pyplot as plt
device = 'cuda' if torch.cuda.is_available() else 'cpu'
import facer
img_file = 'data/twogirls.jpg'
# image: 1 x 3 x h x w
image = facer.hwc2bchw(facer.read_hwc(img_file)).to(device=device)
face_detector = facer.face_detector('retinaface/mobilenet', device=device)
with torch.inference_mode():
faces = face_detector(image)
face_aligner = facer.face_aligner('farl/ibug300w/448', device=device) # optional: "farl/wflw/448", "farl/aflw19/448"
with torch.inference_mode():
faces = face_aligner(image, faces)
img = cv2.imread(img_file)[..., ::-1]
vis_img = img.copy()
for pts in faces['alignment']:
vis_img = facer.draw_landmarks(vis_img, None, pts.cpu().numpy())
plt.imshow(vis_img)
Check this notebook for full example.
Please consider citing
@inproceedings{zheng2022farl,
title={General facial representation learning in a visual-linguistic manner},
author={Zheng, Yinglin and Yang, Hao and Zhang, Ting and Bao, Jianmin and Chen, Dongdong and Huang, Yangyu and Yuan, Lu and Chen, Dong and Zeng, Ming and Wen, Fang},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={18697--18709},
year={2022}
}
Face Attribute Recognition
We wrap the FaRL models for face attribute recognition, the model achieves 92.06% accuracy on CelebA dataset.
import sys
import torch
import facer
device = "cuda" if torch.cuda.is_available() else "cpu"
# image: 1 x 3 x h x w
image = facer.hwc2bchw(facer.read_hwc("data/girl.jpg")).to(device=device)
face_detector = facer.face_detector("retinaface/mobilenet", device=device)
with torch.inference_mode():
faces = face_detector(image)
face_attr = facer.face_attr("farl/celeba/224", device=device)
with torch.inference_mode():
faces = face_attr(image, faces)
labels = face_attr.labels
face1_attrs = faces["attrs"][0] # get the first face's attributes
print(labels)
for prob, label in zip(face1_attrs, labels):
if prob > 0.5:
print(label, prob.item())
Check this notebook for full example.
Please consider citing
@inproceedings{zheng2022farl,
title={General facial representation learning in a visual-linguistic manner},
author={Zheng, Yinglin and Yang, Hao and Zhang, Ting and Bao, Jianmin and Chen, Dongdong and Huang, Yangyu and Yuan, Lu and Chen, Dong and Zeng, Ming and Wen, Fang},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={18697--18709},
year={2022}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file pyfacer-0.0.4-py3-none-any.whl
.
File metadata
- Download URL: pyfacer-0.0.4-py3-none-any.whl
- Upload date:
- Size: 38.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | adb2d005e219c2ff1cb7f0ffe7884d8c92d66b2ceee15b5d780644e2df028768 |
|
MD5 | f7954e11af3ab32fa41adf2ee6cd0bb1 |
|
BLAKE2b-256 | 8ea10d496c625f1a48de800d316988bb4a17ae782fb23e37d2ff224542b956b7 |