Skip to main content

Python implementation of fast azimuthal integration

Project description

Main development website: https://github.com/silx-kit/pyFAI

Github Actions Appveyor Status myBinder Launcher Zenodo DOI RTD docs

PyFAI is an azimuthal integration library that tries to be fast (as fast as C and even more using OpenCL and GPU). It is based on histogramming of the 2theta/Q positions of each (center of) pixel weighted by the intensity of each pixel, but parallel version uses a SparseMatrix-DenseVector multiplication. Neighboring output bins get also a contribution of pixels next to the border thanks to pixel splitting. Finally pyFAI provides also tools to calibrate the experimental setup using Debye-Scherrer rings of a reference compound.

References

Installation

With PIP

As most Python packages, pyFAI is available via PIP:

pip install pyFAI[gui]

It is advised to run this in a vitural environment . Provide the –user option to perform an installation local to your user-space (not recommended). Under UNIX, you may have to run the command via sudo to gain root access and perform a system wide installation (which is neither recommended).

With conda

pyFAI is also available via conda:

conda install pyfai -c conda-forge

To install conda please see either conda or Anaconda.

From source code

The current development version of pyFAI can be downloaded from Github. Presently the source code has been distributed as a zip package. Download it one and unpack it:

unzip pyFAI-main.zip

All files are unpacked into the directory pyFAI-main:

cd pyFAI-main

Install dependencies:

pip install -r requirements.txt

Build it & test it:

python3 run_tests.py

For its tests, pyFAI downloads test images from the internet. Depending on your network connection and your local network configuration, you may have to setup a proxy configuration like this (not needed at ESRF):

export http_proxy=http://proxy.site.org:3128

Finally, install pyFAI in the virtualenv after testing it:

pip install .

The newest development version can also be obtained by checking out from the git repository:

git clone https://github.com/silx-kit/pyFAI.git
cd pyFAI
pip install .

If you want pyFAI to make use of your graphic card, please install pyopencl

Documentation

Documentation can be build using this command and Sphinx (installed on your computer):

python3 build-doc.py

Dependencies

Python 3.8, … 3.12 are well tested and officially supported. For full functionality of pyFAI the following modules need to be installed.

Those dependencies can simply be installed by:

pip install -r requirements.txt

Ubuntu and Debian-like Linux distributions

To use pyFAI on Ubuntu/Debian the needed python modules can be installed either through the Synaptic Package Manager (found in System -> Administration) or using apt-get on from the command line in a terminal:

sudo apt-get install pyfai

The extra Ubuntu packages needed are:

  • python3-numpy

  • python3-scipy

  • python3-matplotlib

  • python3-dev

  • python3-fabio

  • python3-pyopencl

  • python3-pyqt5

  • python3-silx

  • python3-numexpr

using apt-get these can be installed as:

sudo apt-get build-dep pyfai

MacOSX

One needs to manually install a recent version of Python (>=3.8) prior to installing pyFAI. Apple provides only an outdated version of Python 2.7 which is now incomatible. If you want to build pyFAI from sources, you will also need Xcode which is available from the Apple store. The compiled extension will use only one core due to the limitation of the compiler. OpenCL is hence greately adviced on Apple systems. Then install the missing dependencies with pip:

pip install -r requirements.txt

Windows

Under Windows, one needs to install Python (>=3.8) prior to pyFAI. The Visual Studio C++ compiler is also needed when building from sources. Then install the missing dependencies with pip:

pip install  -r requirements.txt

Getting help

A mailing-list, pyfai@esrf.fr, is available to get help on the program and how to use it. One needs to subscribe by sending an email to sympa@esrf.fr with a subject “subscribe pyfai”.

Maintainers

  • Jérôme Kieffer (ESRF)

  • Edgar Gutierrez Fernandez (ESRF)

  • Maciej Jankowski (ESRF)

Contributors

  • Valentin Valls (ESRF)

  • Frédéric-Emmanuel Picca (Soleil)

  • Thomas Vincent (ESRF)

  • Dimitris Karkoulis (Formerly ESRF)

  • Aurore Deschildre (Formerly ESRF)

  • Giannis Ashiotis (Formerly ESRF)

  • Zubair Nawaz (Formerly Sesame)

  • Jon Wright (ESRF)

  • Amund Hov (Formerly ESRF)

  • Dodogerstlin @github

  • Gunthard Benecke (Desy)

  • Gero Flucke (Desy)

Indirect contributors (ideas…)

  • Peter Boesecke

  • Manuel Sánchez del Río

  • Vicente Armando Solé

  • Brian Pauw

  • Veijo Honkimaki

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyfai-2024.9.0.tar.gz (59.6 MB view details)

Uploaded Source

Built Distributions

pyfai-2024.9.0-cp313-cp313-win_amd64.whl (5.3 MB view details)

Uploaded CPython 3.13 Windows x86-64

pyfai-2024.9.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

pyfai-2024.9.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.3 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

pyfai-2024.9.0-cp313-cp313-macosx_11_0_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.13 macOS 11.0+ x86-64

pyfai-2024.9.0-cp313-cp313-macosx_11_0_arm64.whl (5.3 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

pyfai-2024.9.0-cp312-cp312-win_amd64.whl (5.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

pyfai-2024.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyfai-2024.9.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

pyfai-2024.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pyfai-2024.9.0-cp312-cp312-macosx_11_0_arm64.whl (5.3 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyfai-2024.9.0-cp312-cp312-macosx_10_9_x86_64.whl (6.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyfai-2024.9.0-cp311-cp311-win_amd64.whl (5.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyfai-2024.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyfai-2024.9.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

pyfai-2024.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyfai-2024.9.0-cp311-cp311-macosx_11_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyfai-2024.9.0-cp311-cp311-macosx_10_9_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyfai-2024.9.0-cp310-cp310-win_amd64.whl (5.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyfai-2024.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyfai-2024.9.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

pyfai-2024.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyfai-2024.9.0-cp310-cp310-macosx_11_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyfai-2024.9.0-cp310-cp310-macosx_10_9_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyfai-2024.9.0-cp39-cp39-win_amd64.whl (5.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyfai-2024.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyfai-2024.9.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

pyfai-2024.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyfai-2024.9.0-cp39-cp39-macosx_11_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyfai-2024.9.0-cp39-cp39-macosx_10_9_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyfai-2024.9.0-cp38-cp38-win_amd64.whl (5.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyfai-2024.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyfai-2024.9.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

pyfai-2024.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pyfai-2024.9.0-cp38-cp38-macosx_11_0_arm64.whl (5.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyfai-2024.9.0-cp38-cp38-macosx_10_9_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyfai-2024.9.0-cp37-cp37m-win_amd64.whl (5.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyfai-2024.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyfai-2024.9.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

pyfai-2024.9.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pyfai-2024.9.0-cp37-cp37m-macosx_10_9_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyfai-2024.9.0.tar.gz.

File metadata

  • Download URL: pyfai-2024.9.0.tar.gz
  • Upload date:
  • Size: 59.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pyfai-2024.9.0.tar.gz
Algorithm Hash digest
SHA256 00119f57e4a2f6ee9facd8069a410802623e8c2479aeec373d1f611ea513ddad
MD5 79dfbe0f52ae90ee97e1daf6040a6fc4
BLAKE2b-256 2d08612361ebf43b9abc5bf2fb040980d70ad41603aa34df72e59f09d061398c

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 5f880baab3d8905012404bd130300f44d797ac5159560fba505355bf440567a8
MD5 787d04e7ffef9f88f55d78f1f43aa14a
BLAKE2b-256 72d9e1697d0d4ba1b430d7c9fa58700a9668b56dbe58e51a519276573e8ad83a

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 881ed3fabfdf8e6ba4136be04ff09aa6ca7ae2c3d5b679ad176b9c3e806ac83a
MD5 59d1664f6de03d59aa073615b58a5644
BLAKE2b-256 3c9ad9550d3a0feb1fef16c6ff9c8455fcdba29dc930112ae478c730a4fbc627

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c4568c7a780bdb6a407bb75f33f36f4f4ccf9e58dc629e48b8fae21044592e53
MD5 cab45d08d6ed515ed0394927cc127334
BLAKE2b-256 1275d0042177e19b75ed19b9aa1bfe34ba8161668015c544b51b20b8a2964714

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp313-cp313-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp313-cp313-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 1b5099a8a1ce9f0a18281717af430442a9cdaac8939cf16a40e7f416194c1900
MD5 1779debe6dcf16af5017dd47fd084f88
BLAKE2b-256 cdbac8a18535c5eb4c6bfbf31bbe81b9a2470ee4989ae356d5beeaf594e1017e

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5ef246b75a7a0d953b40e64395e87ec09e8fb1dde6da7748e1469796e1506732
MD5 7025528a698bdd04da2fd732a1ea08c0
BLAKE2b-256 f2a238d5f90b0d65f29fcc4183da2cc06477dc135f5ca072df321aa3404069f1

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pyfai-2024.9.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pyfai-2024.9.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 e6a81d99d5d0e323c3e981d537feaab8dd874e36a6f300d899bd07e62f5f3c00
MD5 77b3bff734f3ea7116bcb339dfccbf22
BLAKE2b-256 75cec622fb0e415b7f985818b2a88f9226133ad3ac9028bdc4db77c8f9e61764

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 771c64d22161e08f1da1553a7749d9932c500d924ddf6ce4848a6895e979e453
MD5 717df43f57df6dd8d6af9f78a7555e5f
BLAKE2b-256 cefcfbd5f4306c1c65452e3982523d5bcf51f4326722e7e65653bced27eef67a

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 05b3cc1321d6198533fd26d9623916eb86d0c887056364df07d0b25e52efa3ef
MD5 089f85a4acd80a4ddf6ef9e6f1d1799d
BLAKE2b-256 0b76dd181922aa33cddf6e6c777594dbef540bca02561c7ed26d94f4f05d819f

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 95485dc9414fb4b5c0e90ed50ab73a331dadd93d9542a8922559cb4bc48b5612
MD5 f6b7d4a57150c2b33e8f865b41941bb5
BLAKE2b-256 c5babaf8ecbab3501c9e1e55d9453c3a5eef53df0767927f549fea8710293081

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 35b549c5fd5ec864c96d4415177fda9d9f87ef3430ec97eb9cf4d2d329632d29
MD5 59ef13642d68bd6e1377b62090967376
BLAKE2b-256 0acb8901b937cef3cd353e152d27a4008090ddd74b2c123b1430f7868f5b4b0c

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b200b2de9096d42572a13c097ca67839cc117ed4f0ff4d33426ba9f0325faa95
MD5 b5685e25e2063dc1c022e788cf40bd8b
BLAKE2b-256 70b2b3bc0d703f82f7e1abdaea4f04fc9406235048806e7215d38699dea45a5d

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyfai-2024.9.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pyfai-2024.9.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7c7756d21a0e91979611180d0565e1adfbe62f458828257285ab01b3f6cfaa9e
MD5 e8b55de66bd727f7e00a7f9455e259cc
BLAKE2b-256 dbbcfe1677c18f986dd8b96e5d27da15c6a9f843bba876b001c413b06bc0aa24

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2c681ff1a06b999195a5618135926e64db54c369e5e0e2e93909a890208b518d
MD5 dd3d3c4cc837c18d92e5b2e948ec3410
BLAKE2b-256 87ddc0273da0b374c526a5330ce40f56ce1391497323e3870f371e0acbd38733

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 0c2ae74ab9e65c1d84761771b5d08623c699144252f9d7321fff8eadbf9ff190
MD5 d6bddbb42ba482791262b99f99d08063
BLAKE2b-256 298dd86fe4b17086d8ec26d9fe242100a8794e896532f09b6879f9ed52a43f59

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a331fbf5c3b49202c7e639a2ede01d6932c61727c165a0ff5d02b1626952b6c7
MD5 d148f0694450f0126e11435fa879604e
BLAKE2b-256 b05de14ecd1d27ca033b76b483b6c64ebcf9de601b7553057addd47540728061

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5e09ca98daaece80d70545c39b4e67cd59917bc1364558e6f63009de310388a9
MD5 5589dc8f15913a089f4aa94d7fc31ada
BLAKE2b-256 21279999b4d21c06f664208ca0175e141d7e8d63d2ade1697459afedf1751c2f

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7283747a6b034b062000f99220e0f667d78cc20f66102c35e707c0946a56d6dd
MD5 3eee8079350836a4de167229eeda7955
BLAKE2b-256 237751e31ae9e0a012d319eb2586bb72e5fb89ab8ca93db2d0102bce36907929

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyfai-2024.9.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pyfai-2024.9.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d3f8e9110a5999a05593021a9f6e1c646c6cc9e84a8a571828c71665e7407b65
MD5 fd40261d4df835d8c2ccb47de9e6320d
BLAKE2b-256 658684dc0d807cf918cb56ef2b15026e6c23d865fc0b507ffaad79cec24d54a3

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 90b274732e1ccebe7a6777ca69930b26931c399e0030583807bf9037d54abaa8
MD5 fc28e572c91baf0727db52962ae1d37a
BLAKE2b-256 0f15138b905c0609686dc70d909a116f309bc289f273bceb1575d2ba1938aa9c

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 86c4aefd5ac6c5234b1ce2af57afef3911050d1112297d233d9ed8de5afc28a4
MD5 573982442bc4e89005d29b56cc015da1
BLAKE2b-256 380a4a60ffc1c74dd7ce3aa77faba1e452602d3babf54f03e1a1715dd77d41f9

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cc7c6428e16fd04e691925694fe39fd17a438884ea67b27fc19ea3cccea916dd
MD5 e538ed24bf9e04313c5ae1b72d441874
BLAKE2b-256 5055aab7b00a056cc28bf746352c4616da31df9285922f64cf0086961e752cf8

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b7ef2c1973c12e040b5c3f899e12546971de02ecb8916b1265f7408573c80bf6
MD5 b9cbb06eb8f868ba2f317990e96d7d97
BLAKE2b-256 5d03c230a3d9b3979661c406cb9f7515081c080fce369e7e9ff7b87efd842e51

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1bc07b7249e9aaa2a954c6d73221be515e971e2ca6454f7797f2e0a41e117621
MD5 a184589ec63386e62e118dc1cbce8907
BLAKE2b-256 8ce965a35b6a1c3ceac704c960f979cf58093a9b1b1f838389b1cae077409b92

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyfai-2024.9.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pyfai-2024.9.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 fd182ae6dd45b8a775d520769292e695a794d31f14e733c1b7bae2e010158f63
MD5 989324e662459c72435a59d6cffcb01d
BLAKE2b-256 77c48fffb21dd03df769b163a2da7e7bd4a99b7b6e51fec57637870f0dd106dc

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 93199bce0492549d44a289889563aab08e676a37f57bbf454cbedf17012438c6
MD5 a170f298c57cca5285d0e2fcab8f53e4
BLAKE2b-256 625a4d4171eaea849baaa9a1c3874ca2a5b7976c75024aec6f1ac4f7c94cbe1a

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 b3074e657ba6aa004f91d347de16e4a81e91ab4fb7430ab2a74d5656bd2d5675
MD5 35f29916cce359fe82c145cd263d55cd
BLAKE2b-256 63e2b7818318a907acacea7f6a87abc74a6e7faba018dda2066cfa618edf5a50

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5f2274c262a755cae23e062acbd961ac1f75f779e6e73fc1833808ea30f99ff1
MD5 a99cdfc9fa0f7bb37bd67a49c774bf74
BLAKE2b-256 159c75486acdcc772227d43963b4057e7ac66bdba151bb14bba0eed286674128

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 533f0ddbd3b76a57dfb8ff2467b8bc6844891dd8edf17503f3c63d3cd507249a
MD5 c5c95694afcc1da7aff447e4ce3b6353
BLAKE2b-256 6b15d19fd68c80e5586da680527cb7063260d10f1c36b19e0da755a29b556173

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4223775103c39523148e85ee19a986bca42aab85ce6810c46e3a6edebd4bc9d5
MD5 b6035c0b3d48ca279fd8762a9835860e
BLAKE2b-256 0492b9801fedf102331c2de24166fd627303aa1f4267df0480c52d687aa6f47f

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyfai-2024.9.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pyfai-2024.9.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 24ad67b334d2f082f0ff4bf87938410e9440735cb2c15598da6928d531b95b5d
MD5 daaa5533c74920837235ccfa2e7a1c00
BLAKE2b-256 ff18bc54b9f368be35c49f9e36523b1c00e14a84f6f2a47dd1428ad250c2e6de

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 98a3567c658be1521d213955b9494d982a9b1cc775f542fe610a783d70e1f308
MD5 03412a3c279515ff0529424dd8bfb0ef
BLAKE2b-256 2bd2abcea643664f7e4961a279371890c7b8aae7653521c8ceddd8b6b2dc3a63

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 5411242f8ee9392baf76b3466c3aaebd1901c99cb7a50e9c4a1c45682011818f
MD5 cc3af5a26b650ecbb7d3b3dcc8ea7c51
BLAKE2b-256 24714bab6d34166425e7f5c424e0cf55192959f1a890bbd1f0b8211977172917

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b49558854d37a454a464a691d60aa44b424bf1acc1de4dd20633205331759cc9
MD5 a417573724dbc268dd23f2deff45c36f
BLAKE2b-256 2ba56c0e9f7fef7c97817a0e0c86a17b3df66bf42667993c9923f7b867f20078

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4de8fa8665a593196cbc5de2e6bfbc69e85aff88cdcb9b1fb6407a5fcf9b4396
MD5 268a82734bc4a2ae8bc50ff2e0db2a37
BLAKE2b-256 fcb448d62ba56cff9d7836c5e19e48598343dba004f66ffbd76112313787459b

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 899368cdf683c7fafe649024ffe3f8f298ba80633171e4ff5a072a9c990b0068
MD5 0351aef2b3a2eca9c53f657940e9af75
BLAKE2b-256 4c7d2a2e680cb4e640d41f1c154bb478d9f92b05ff649b98a37b97266eee1edd

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyfai-2024.9.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pyfai-2024.9.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d18a162af884afe7ff4052bc9a9b0007e6bc881c4c155d167eb75006f57a092a
MD5 279068bdba57a30142d875a50207ebe6
BLAKE2b-256 83342df0c8334c90fd98708c43f5f8efbf7b5f9e85c55f6d464c5ac4c28fba21

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bfac2cf2c995f82e5925af65ed56accb04ce157f137d87b0a2c212303fcc1da9
MD5 dc2b5194616052d418298a8441749040
BLAKE2b-256 cc6762b9af48465dae226eff28e7f714cd5e24e2c6cbc2639e6aa3696f44b534

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f236da363b8fd3ed599e50282a4770bcd2555d57103568f0b33c89e25784e312
MD5 53589dc6da56e3eab9d019434e2dfe8f
BLAKE2b-256 7eb5f52f291523667edb7b98709d4e26ff044e12be1ea75affc4baddad86b3ef

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7e3ee48dc835b526ca696a70cccec85972a75f39a8c0345d236807a904146214
MD5 12e0a7fc0325a67db97ad56a3c5648be
BLAKE2b-256 5211068a13772010cb8905471d09cffcf9100fcc48a6d6b98f4ff8e8af241122

See more details on using hashes here.

File details

Details for the file pyfai-2024.9.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2024.9.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 813cae126596634f67c51f70742184272c420573918f70dd2d9b7ea4767d3555
MD5 fb7402fe69891fb29767505bab409197
BLAKE2b-256 bf0749ce5ac1d5f419461bc8e1703c96457335a7adc5c0720297d7c0c91fca71

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page