Skip to main content

pyfastx is a python module for fast random access to sequences from plain and gzipped FASTA/Q file

Project description

Action Readthedocs Codecov PyPI Language Pyver Wheel Codacy Downloads License Bioconda

Citation: Lianming Du, Qin Liu, Zhenxin Fan, Jie Tang, Xiuyue Zhang, Megan Price, Bisong Yue, Kelei Zhao. Pyfastx: a robust Python package for fast random access to sequences from plain and gzipped FASTA/Q files. Briefings in Bioinformatics, 2021, 22(4):bbaa368.

Introduction

The pyfastx is a lightweight Python C extension that enables users to randomly access to sequences from plain and gzipped FASTA/Q files. This module aims to provide simple APIs for users to extract seqeunce from FASTA and reads from FASTQ by identifier and index number. The pyfastx will build indexes stored in a sqlite3 database file for random access to avoid consuming excessive amount of memory. In addition, the pyfastx can parse standard (sequence is spread into multiple lines with same length) and nonstandard (sequence is spread into one or more lines with different length) FASTA format. This module used kseq.h written by @attractivechaos in klib project to parse plain FASTA/Q file and zran.c written by @pauldmccarthy in project indexed_gzip to index gzipped file for random access.

This project was heavily inspired by @mdshw5’s project pyfaidx and @brentp’s project pyfasta.

Features

  • Single file for the Python extension

  • Lightweight, memory efficient for parsing FASTA/Q file

  • Fast random access to sequences from gzipped FASTA/Q file

  • Read sequences from FASTA file line by line

  • Calculate N50 and L50 of sequences in FASTA file

  • Calculate GC content and nucleotides composition

  • Extract reverse, complement and antisense sequences

  • Excellent compatibility, support for parsing nonstandard FASTA file

  • Support for FASTQ quality score conversion

  • Provide command line interface for splitting FASTA/Q file

Installation

Currently, pyfastx supports Python 3.6, 3.7, 3.8, 3.9, 3.10, 3.11. Make sure you have installed both pip and Python before starting.

You can install pyfastx via the Python Package Index (PyPI)

pip install pyfastx

Update pyfastx module

pip install -U pyfastx

FASTX

New in pyfastx 0.8.0.

Pyfastx provide a simple and fast python binding for kseq.h to iterate over sequences or reads in fasta/q file. The FASTX object will automatically detect the input sequence format (fasta or fastq) to return different tuple.

FASTA sequences iteration

When iterating over sequences on FASTX object, a tuple (name, seq) will be returned.

>>> fa = pyfastx.Fastx('tests/data/test.fa.gz')
>>> for name,seq in fa:
>>>     print(name)
>>>     print(seq)

>>> #always output uppercase sequence
>>> for item in pyfastx.Fastx('tests/data/test.fa', uppercase=True):
>>>     print(item)

>>> #Manually specify sequence format
>>> for item in pyfastx.Fastx('tests/data/test.fa', format="fasta"):
>>>     print(item)

If you want the sequence comment, you can set comment to True, New in pyfastx 0.9.0.

>>> fa = pyfastx.Fastx('tests/data/test.fa.gz', comment=True)
>>> for name,seq,comment in fa:
>>>     print(name)
>>>     print(seq)
>>>     print(comment)

The comment is the content of header line after the first white space or tab character.

FASTQ reads iteration

When iterating over reads on FASTX object, a tuple (name, seq, qual) will be returned.

>>> fq = pyfastx.Fastx('tests/data/test.fq.gz')
>>> for name,seq,qual in fq:
>>>     print(name)
>>>     print(seq)
>>>     print(qual)

If you want the read comment, you can set comment to True, New in pyfastx 0.9.0.

>>> fq = pyfastx.Fastx('tests/data/test.fq.gz', comment=True)
>>> for name,seq,qual,comment in fq:
>>>     print(name)
>>>     print(seq)
>>>     print(qual)
>>>     print(comment)

The comment is the content of header line after the first white space or tab character.

FASTA

Read FASTA file

Read plain or gzipped FASTA file and build index, support for random access to FASTA.

>>> import pyfastx
>>> fa = pyfastx.Fasta('test/data/test.fa.gz')
>>> fa
<Fasta> test/data/test.fa.gz contains 211 seqs

FASTA records iteration

The fastest way to iterate plain or gzipped FASTA file without building index, the iteration will return a tuple contains name and sequence.

>>> import pyfastx
>>> for name, seq in pyfastx.Fasta('test/data/test.fa.gz', build_index=False):
>>>     print(name, seq)

You can also iterate sequence object from FASTA object like this:

>>> import pyfastx
>>> for seq in pyfastx.Fasta('test/data/test.fa.gz'):
>>>     print(seq.name)
>>>     print(seq.seq)
>>>     print(seq.description)

Iteration with build_index=True (default) return sequence object which allows you to access attributions of sequence. New in pyfastx 0.6.3.

Get FASTA information

>>> # get sequence counts in FASTA
>>> len(fa)
211

>>> # get total sequence length of FASTA
>>> fa.size
86262

>>> # get GC content of DNA sequence of FASTA
>>> fa.gc_content
43.529014587402344

>>> # get GC skew of DNA sequences in FASTA
>>> # New in pyfastx 0.3.8
>>> fa.gc_skews
0.004287730902433395

>>> # get composition of nucleotides in FASTA
>>> fa.composition
{'A': 24534, 'C': 18694, 'G': 18855, 'T': 24179}

>>> # get fasta type (DNA, RNA, or protein)
>>> fa.type
'DNA'

>>> # check fasta file is gzip compressed
>>> fa.is_gzip
True

Get longest and shortest sequence

New in pyfastx 0.3.0

>>> # get longest sequence
>>> s = fa.longest
>>> s
<Sequence> JZ822609.1 with length of 821

>>> s.name
'JZ822609.1'

>>> len(s)
821

>>> # get shortest sequence
>>> s = fa.shortest
>>> s
<Sequence> JZ822617.1 with length of 118

>>> s.name
'JZ822617.1'

>>> len(s)
118

Calculate N50 and L50

New in pyfastx 0.3.0

Calculate assembly N50 and L50, return (N50, L50), learn more about N50,L50

>>> # get FASTA N50 and L50
>>> fa.nl(50)
(516, 66)

>>> # get FASTA N90 and L90
>>> fa.nl(90)
(231, 161)

>>> # get FASTA N75 and L75
>>> fa.nl(75)
(365, 117)

Get sequence mean and median length

New in pyfastx 0.3.0

>>> # get sequence average length
>>> fa.mean
408

>>> # get seqeunce median length
>>> fa.median
430

Get sequence counts

New in pyfastx 0.3.0

Get counts of sequences whose length >= specified length

>>> # get counts of sequences with length >= 200 bp
>>> fa.count(200)
173

>>> # get counts of sequences with length >= 500 bp
>>> fa.count(500)
70

Get subsequences

Subsequences can be retrieved from FASTA file by using a list of [start, end] coordinates

>>> # get subsequence with start and end position
>>> interval = (1, 10)
>>> fa.fetch('JZ822577.1', interval)
'CTCTAGAGAT'

>>> # get subsequences with a list of start and end position
>>> intervals = [(1, 10), (50, 60)]
>>> fa.fetch('JZ822577.1', intervals)
'CTCTAGAGATTTTAGTTTGAC'

>>> # get subsequences with reverse strand
>>> fa.fetch('JZ822577.1', (1, 10), strand='-')
'ATCTCTAGAG'

Key function

New in pyfastx 0.5.1

Sometimes your fasta will have a long header which contains multiple identifiers and description, for example, “>JZ822577.1 contig1 cDNA library of flower petals in tree peony by suppression subtractive hybridization Paeonia suffruticosa cDNA, mRNA sequence”. In this case, both “JZ822577.1” and “contig1” can be used as identifer. you can specify the key function to select one as identifier.

>>> #default use JZ822577.1 as identifier
>>> #specify key_func to select contig1 as identifer
>>> fa = pyfastx.Fasta('tests/data/test.fa.gz', key_func=lambda x: x.split()[1])
>>> fa
<Fasta> tests/data/test.fa.gz contains 211 seqs

Sequence

Get a sequence from FASTA

>>> # get sequence like a dictionary by identifier
>>> s1 = fa['JZ822577.1']
>>> s1
<Sequence> JZ822577.1 with length of 333

>>> # get sequence like a list by index
>>> s2 = fa[2]
>>> s2
<Sequence> JZ822579.1 with length of 176

>>> # get last sequence
>>> s3 = fa[-1]
>>> s3
<Sequence> JZ840318.1 with length of 134

>>> # check a sequence name weather in FASTA file
>>> 'JZ822577.1' in fa
True

Get sequence information

>>> s = fa[-1]
>>> s
<Sequence> JZ840318.1 with length of 134

>>> # get sequence order number in FASTA file
>>> # New in pyfastx 0.3.7
>>> s.id
211

>>> # get sequence name
>>> s.name
'JZ840318.1'

>>> # get sequence description
>>> # New in pyfastx 0.3.1
>>> s.description
'R283 cDNA library of flower petals in tree peony by suppression subtractive hybridization Paeonia suffruticosa cDNA, mRNA sequence'

>>> # get sequence string
>>> s.seq
'ACTGGAGGTTCTTCTTCCTGTGGAAAGTAACTTGTTTTGCCTTCACCTGCCTGTTCTTCACATCAACCTTGTTCCCACACAAAACAATGGGAATGTTCTCACACACCCTGCAGAGATCACGATGCCATGTTGGT'

>>> # get sequence raw string, New in pyfastx 0.6.3
>>> print(s.raw)
>JZ840318.1 R283 cDNA library of flower petals in tree peony by suppression subtractive hybridization Paeonia suffruticosa cDNA, mRNA sequence
ACTGGAGGTTCTTCTTCCTGTGGAAAGTAACTTGTTTTGCCTTCACCTGCCTGTTCTTCACATCAACCTT
GTTCCCACACAAAACAATGGGAATGTTCTCACACACCCTGCAGAGATCACGATGCCATGTTGGT

>>> # get sequence length
>>> len(s)
134

>>> # get GC content if dna sequence
>>> s.gc_content
46.26865768432617

>>> # get nucleotide composition if dna sequence
>>> s.composition
{'A': 31, 'C': 37, 'G': 25, 'T': 41, 'N': 0}

Sequence slice

Sequence object can be sliced like a python string

>>> # get a sub seq from sequence
>>> s = fa[-1]
>>> ss = s[10:30]
>>> ss
<Sequence> JZ840318.1 from 11 to 30

>>> ss.name
'JZ840318.1:11-30'

>>> ss.seq
'CTTCTTCCTGTGGAAAGTAA'

>>> ss = s[-10:]
>>> ss
<Sequence> JZ840318.1 from 125 to 134

>>> ss.name
'JZ840318.1:125-134'

>>> ss.seq
'CCATGTTGGT'

Reverse and complement sequence

>>> # get sliced sequence
>>> fa[0][10:20].seq
'GTCAATTTCC'

>>> # get reverse of sliced sequence
>>> fa[0][10:20].reverse
'CCTTTAACTG'

>>> # get complement of sliced sequence
>>> fa[0][10:20].complement
'CAGTTAAAGG'

>>> # get reversed complement sequence, corresponding to sequence in antisense strand
>>> fa[0][10:20].antisense
'GGAAATTGAC'

Read sequence line by line

New in pyfastx 0.3.0

The sequence object can be iterated line by line as they appear in FASTA file.

>>> for line in fa[0]:
...     print(line)
...
CTCTAGAGATTACTTCTTCACATTCCAGATCACTCAGGCTCTTTGTCATTTTAGTTTGACTAGGATATCG
AGTATTCAAGCTCATCGCTTTTGGTAATCTTTGCGGTGCATGCCTTTGCATGCTGTATTGCTGCTTCATC
ATCCCCTTTGACTTGTGTGGCGGTGGCAAGACATCCGAAGAGTTAAGCGATGCTTGTCTAGTCAATTTCC
CCATGTACAGAATCATTGTTGTCAATTGGTTGTTTCCTTGATGGTGAAGGGGCTTCAATACATGAGTTCC
AAACTAACATTTCTTGACTAACACTTGAGGAAGAAGGACAAGGGTCCCCATGT

Search for subsequence

New in pyfastx 0.3.6

Search for subsequence from given sequence and get one-based start position of the first occurrence

>>> # search subsequence in sense strand
>>> fa[0].search('GCTTCAATACA')
262

>>> # check subsequence weather in sequence
>>> 'GCTTCAATACA' in fa[0]
True

>>> # search subsequence in antisense strand
>>> fa[0].search('CCTCAAGT', '-')
301

FastaKeys

New in pyfastx 0.8.0. We have changed Identifier object to FastaKeys object.

Get keys

Get all names of sequence as a list-like object.

>>> ids = fa.keys()
>>> ids
<FastaKeys> contains 211 keys

>>> # get count of sequence
>>> len(ids)
211

>>> # get key by index
>>> ids[0]
'JZ822577.1'

>>> # check key whether in fasta
>>> 'JZ822577.1' in ids
True

>>> # iterate over keys
>>> for name in ids:
>>>     print(name)

>>> # convert to a list
>>> list(ids)

Sort keys

Sort keys by sequence id, name, or length for iteration

New in pyfastx 0.5.0

>>> # sort keys by length with descending order
>>> for name in ids.sort(by='length', reverse=True):
>>>     print(name)

>>> # sort keys by name with ascending order
>>> for name in ids.sort(by='name'):
>>>     print(name)

>>> # sort keys by id with descending order
>>> for name in ids.sort(by='id', reverse=True)
>>>     print(name)

Filter keys

Filter keys by sequence length and name

New in pyfastx 0.5.10

>>> # get keys with length > 600
>>> ids.filter(ids > 600)
<FastaKeys> contains 48 keys

>>> # get keys with length >= 500 and <= 700
>>> ids.filter(ids>=500, ids<=700)
<FastaKeys> contains 48 keys

>>> # get keys with length > 500 and < 600
>>> ids.filter(500<ids<600)
<FastaKeys> contains 22 keys

>>> # get keys contain JZ8226
>>> ids.filter(ids % 'JZ8226')
<FastaKeys> contains 90 keys

>>> # get keys contain JZ8226 with length > 550
>>> ids.filter(ids % 'JZ8226', ids>550)
<FastaKeys> contains 17 keys

>>> # clear sort order and filters
>>> ids.reset()
<FastaKeys> contains 211 keys

>>> # list a filtered result
>>> ids.filter(ids % 'JZ8226', ids>730)
>>> list(ids)
['JZ822609.1', 'JZ822650.1', 'JZ822664.1', 'JZ822699.1']

>>> # list a filtered result with sort order
>>> ids.filter(ids % 'JZ8226', ids>730).sort('length', reverse=True)
>>> list(ids)
['JZ822609.1', 'JZ822699.1', 'JZ822664.1', 'JZ822650.1']

>>> ids.filter(ids % 'JZ8226', ids>730).sort('name', reverse=True)
>>> list(ids)
['JZ822699.1', 'JZ822664.1', 'JZ822650.1', 'JZ822609.1']

FASTQ

New in pyfastx 0.4.0

Read FASTQ file

Read plain or gzipped file and build index, support for random access to reads from FASTQ.

>>> import pyfastx
>>> fq = pyfastx.Fastq('tests/data/test.fq.gz')
>>> fq
<Fastq> tests/data/test.fq.gz contains 100 reads

FASTQ records iteration

The fastest way to parse plain or gzipped FASTQ file without building index, the iteration will return a tuple contains read name, seq and quality.

>>> import pyfastx
>>> for name,seq,qual in pyfastx.Fastq('tests/data/test.fq.gz', build_index=False):
>>>     print(name)
>>>     print(seq)
>>>     print(qual)

You can also iterate read object from FASTQ object like this:

>>> import pyfastx
>>> for read in pyfastx.Fastq('test/data/test.fq.gz'):
>>>     print(read.name)
>>>     print(read.seq)
>>>     print(read.qual)
>>>     print(read.quali)

Iteration with build_index=True (default) return read object which allows you to access attribution of read. New in pyfastx 0.6.3.

Get FASTQ information

>>> # get read counts in FASTQ
>>> len(fq)
800

>>> # get total bases
>>> fq.size
120000

>>> # get GC content of FASTQ file
>>> fq.gc_content
66.17471313476562

>>> # get composition of bases in FASTQ
>>> fq.composition
{'A': 20501, 'C': 39705, 'G': 39704, 'T': 20089, 'N': 1}

>>> # New in pyfastx 0.6.10
>>> # get average length of reads
>>> fq.avglen
150.0

>>> # get maximum lenth of reads
>>> fq.maxlen
150

>>> # get minimum length of reas
>>> fq.minlen
150

>>> # get maximum quality score
>>> fq.maxqual
70

>>> # get minimum quality score
>>> fq.minqual
35

>>> # get phred which affects the quality score conversion
>>> fq.phred
33

>>> # Guess fastq quality encoding system
>>> # New in pyfastx 0.4.1
>>> fq.encoding_type
['Sanger Phred+33', 'Illumina 1.8+ Phred+33']

Read

Get read from FASTQ

>>> #get read like a dict by read name
>>> r1 = fq['A00129:183:H77K2DMXX:1:1101:4752:1047']
>>> r1
<Read> A00129:183:H77K2DMXX:1:1101:4752:1047 with length of 150

>>> # get read like a list by index
>>> r2 = fq[10]
>>> r2
<Read> A00129:183:H77K2DMXX:1:1101:18041:1078 with length of 150

>>> # get the last read
>>> r3 = fq[-1]
>>> r3
<Read> A00129:183:H77K2DMXX:1:1101:31575:4726 with length of 150

>>> # check a read weather in FASTQ file
>>> 'A00129:183:H77K2DMXX:1:1101:4752:1047' in fq
True

Get read information

>>> r = fq[-10]
>>> r
<Read> A00129:183:H77K2DMXX:1:1101:1750:4711 with length of 150

>>> # get read order number in FASTQ file
>>> r.id
791

>>> # get read name
>>> r.name
'A00129:183:H77K2DMXX:1:1101:1750:4711'

>>> # get read full header line, New in pyfastx 0.6.3
>>> r.description
'@A00129:183:H77K2DMXX:1:1101:1750:4711 1:N:0:CAATGGAA+CGAGGCTG'

>>> # get read length
>>> len(r)
150

>>> # get read sequence
>>> r.seq
'CGAGGAAATCGACGTCACCGATCTGGAAGCCCTGCGCGCCCATCTCAACCAGAAATGGGGTGGCCAGCGCGGCAAGCTGACCCTGCTGCCGTTCCTGGTCCGCGCCATGGTCGTGGCGCTGCGCGACTTCCCGCAGTTGAACGCGCGCTA'

>>> # get raw string of read, New in pyfastx 0.6.3
>>> print(r.raw)
@A00129:183:H77K2DMXX:1:1101:1750:4711 1:N:0:CAATGGAA+CGAGGCTG
CGAGGAAATCGACGTCACCGATCTGGAAGCCCTGCGCGCCCATCTCAACCAGAAATGGGGTGGCCAGCGCGGCAAGCTGACCCTGCTGCCGTTCCTGGTCCGCGCCATGGTCGTGGCGCTGCGCGACTTCCCGCAGTTGAACGCGCGCTA
+
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF:FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF:FF,FFFFFFFFFFFFFFFFFFFFFFFFFF,F:FFFFFFFFF:

>>> # get read quality ascii string
>>> r.qual
'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF:FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF:FF,FFFFFFFFFFFFFFFFFFFFFFFFFF,F:FFFFFFFFF:'

>>> # get read quality integer value, ascii - 33 or 64
>>> r.quali
[37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 25, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 25, 37, 37, 11, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 11, 37, 25, 37, 37, 37, 37, 37, 37, 37, 37, 37, 25]

>>> # get read length
>>> len(r)
150

FastqKeys

New in pyfastx 0.8.0.

Get fastq keys

Get all names of read as a list-like object.

>>> ids = fq.keys()
>>> ids
<FastqKeys> contains 800 keys

>>> # get count of read
>>> len(ids)
800

>>> # get key by index
>>> ids[0]
'A00129:183:H77K2DMXX:1:1101:6804:1031'

>>> # check key whether in fasta
>>> 'A00129:183:H77K2DMXX:1:1101:14416:1031' in ids
True

Command line interface

New in pyfastx 0.5.0

$ pyfastx -h

usage: pyfastx COMMAND [OPTIONS]

A command line tool for FASTA/Q file manipulation

optional arguments:
  -h, --help     show this help message and exit
  -v, --version  show program's version number and exit

Commands:

    index        build index for fasta/q file
    stat         show detailed statistics information of fasta/q file
    split        split fasta/q file into multiple files
    fq2fa        convert fastq file to fasta file
    subseq       get subsequences from fasta file by region
    sample       randomly sample sequences from fasta or fastq file
    extract      extract full sequences or reads from fasta/q file

Build index

New in pyfastx 0.6.10

$ pyfastx index -h

usage: pyfastx index [-h] [-f] fastx [fastx ...]

positional arguments:
  fastx       fasta or fastq file, gzip support

optional arguments:
  -h, --help  show this help message and exit
  -f, --full  build full index, base composition will be calculated

Show statistics information

$ pyfastx stat -h

usage: pyfastx info [-h] fastx

positional arguments:
  fastx       input fasta or fastq file, gzip support

optional arguments:
  -h, --help  show this help message and exit

Split FASTA/Q file

$ pyfastx split -h

usage: pyfastx split [-h] (-n int | -c int) [-o str] fastx

positional arguments:
  fastx                 fasta or fastq file, gzip support

optional arguments:
  -h, --help            show this help message and exit
  -n int                split a fasta/q file into N new files with even size
  -c int                split a fasta/q file into multiple files containing the same sequence counts
  -o str, --out-dir str
                        output directory, default is current folder

Convert FASTQ to FASTA file

$ pyfastx fq2fa -h

usage: pyfastx fq2fa [-h] [-o str] fastx

positional arguments:
  fastx                 fastq file, gzip support

optional arguments:
  -h, --help            show this help message and exit
  -o str, --out-file str
                        output file, default: output to stdout

Get subsequence with region

$ pyfastx subseq -h

usage: pyfastx subseq [-h] [-r str | -b str] [-o str] fastx [region [region ...]]

positional arguments:
  fastx                 input fasta file, gzip support
  region                format is chr:start-end, start and end position is 1-based, multiple names were separated by space

optional arguments:
  -h, --help            show this help message and exit
  -r str, --region-file str
                        tab-delimited file, one region per line, both start and end position are 1-based
  -b str, --bed-file str
                        tab-delimited BED file, 0-based start position and 1-based end position
  -o str, --out-file str
                        output file, default: output to stdout

Sample sequences

$ pyfastx sample -h

usage: pyfastx sample [-h] (-n int | -p float) [-s int] [--sequential-read] [-o str] fastx

positional arguments:
  fastx                 fasta or fastq file, gzip support

optional arguments:
  -h, --help            show this help message and exit
  -n int                number of sequences to be sampled
  -p float              proportion of sequences to be sampled, 0~1
  -s int, --seed int    random seed, default is the current system time
  --sequential-read     start sequential reading, particularly suitable for sampling large numbers of sequences
  -o str, --out-file str
                        output file, default: output to stdout

Extract sequences

New in pyfastx 0.6.10

$ pyfastx extract -h

usage: pyfastx extract [-h] [-l str] [--reverse-complement] [--out-fasta] [-o str] [--sequential-read]
                       fastx [name [name ...]]

positional arguments:
  fastx                 fasta or fastq file, gzip support
  name                  sequence name or read name, multiple names were separated by space

optional arguments:
  -h, --help            show this help message and exit
  -l str, --list-file str
                        a file containing sequence or read names, one name per line
  --reverse-complement  output reverse complement sequence
  --out-fasta           output fasta format when extract reads from fastq, default output fastq format
  -o str, --out-file str
                        output file, default: output to stdout
  --sequential-read     start sequential reading, particularly suitable for extracting large numbers of sequences

Drawbacks

If you intensively check sequence names exists in FASTA file using in operator on FASTA object like:

>>> fa = pyfastx.Fasta('tests/data/test.fa.gz')
>>> # Suppose seqnames has 100000 names
>>> for seqname in seqnames:
>>>     if seqname in fa:
>>>             do something

This will take a long time to finish. Becuase, pyfastx does not load the index into memory, the in operating is corresponding to sql query existence from index database. The faster alternative way to do this is:

>>> fa = pyfastx.Fasta('tests/data/test.fa.gz')
>>> # load all sequence names into a set object
>>> all_names = set(fa.keys())
>>> for seqname in seqnames:
>>>     if seqname in all_names:
>>>             do something

Testing

The pyfaidx module was used to test pyfastx. First, make sure you have a suitable version installed:

pip install pyfastx

To test pyfastx, you should also install pyfaidx 0.5.8:

pip install pyfaidx==0.5.8

Then, to run the tests:

$ python setup.py test

Acknowledgements

kseq.h and zlib was used to parse FASTA format. Sqlite3 was used to store built indexes. pyfastx can randomly access to sequences from gzipped FASTA file mainly attributed to indexed_gzip.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyfastx-2.1.0.tar.gz (260.9 kB view details)

Uploaded Source

Built Distributions

pyfastx-2.1.0-cp312-cp312-win_amd64.whl (639.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

pyfastx-2.1.0-cp312-cp312-win32.whl (535.8 kB view details)

Uploaded CPython 3.12 Windows x86

pyfastx-2.1.0-cp312-cp312-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pyfastx-2.1.0-cp312-cp312-musllinux_1_1_i686.whl (1.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ i686

pyfastx-2.1.0-cp312-cp312-musllinux_1_1_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pyfastx-2.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyfastx-2.1.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

pyfastx-2.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pyfastx-2.1.0-cp312-cp312-macosx_11_0_arm64.whl (723.0 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyfastx-2.1.0-cp312-cp312-macosx_10_9_x86_64.whl (792.1 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyfastx-2.1.0-cp312-cp312-macosx_10_9_universal2.whl (1.5 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

pyfastx-2.1.0-cp311-cp311-win_amd64.whl (639.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyfastx-2.1.0-cp311-cp311-win32.whl (535.5 kB view details)

Uploaded CPython 3.11 Windows x86

pyfastx-2.1.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pyfastx-2.1.0-cp311-cp311-musllinux_1_1_i686.whl (1.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

pyfastx-2.1.0-cp311-cp311-musllinux_1_1_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pyfastx-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyfastx-2.1.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

pyfastx-2.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyfastx-2.1.0-cp311-cp311-macosx_11_0_arm64.whl (722.9 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyfastx-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl (791.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyfastx-2.1.0-cp311-cp311-macosx_10_9_universal2.whl (1.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

pyfastx-2.1.0-cp310-cp310-win_amd64.whl (639.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyfastx-2.1.0-cp310-cp310-win32.whl (535.5 kB view details)

Uploaded CPython 3.10 Windows x86

pyfastx-2.1.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pyfastx-2.1.0-cp310-cp310-musllinux_1_1_i686.whl (1.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pyfastx-2.1.0-cp310-cp310-musllinux_1_1_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pyfastx-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyfastx-2.1.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

pyfastx-2.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyfastx-2.1.0-cp310-cp310-macosx_11_0_arm64.whl (722.8 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyfastx-2.1.0-cp310-cp310-macosx_10_9_x86_64.whl (791.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyfastx-2.1.0-cp310-cp310-macosx_10_9_universal2.whl (1.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pyfastx-2.1.0-cp39-cp39-win_amd64.whl (639.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyfastx-2.1.0-cp39-cp39-win32.whl (535.5 kB view details)

Uploaded CPython 3.9 Windows x86

pyfastx-2.1.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pyfastx-2.1.0-cp39-cp39-musllinux_1_1_i686.whl (1.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pyfastx-2.1.0-cp39-cp39-musllinux_1_1_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pyfastx-2.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyfastx-2.1.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

pyfastx-2.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyfastx-2.1.0-cp39-cp39-macosx_11_0_arm64.whl (722.9 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyfastx-2.1.0-cp39-cp39-macosx_10_9_x86_64.whl (791.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyfastx-2.1.0-cp39-cp39-macosx_10_9_universal2.whl (1.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pyfastx-2.1.0-cp38-cp38-win_amd64.whl (639.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyfastx-2.1.0-cp38-cp38-win32.whl (535.6 kB view details)

Uploaded CPython 3.8 Windows x86

pyfastx-2.1.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pyfastx-2.1.0-cp38-cp38-musllinux_1_1_i686.whl (1.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

pyfastx-2.1.0-cp38-cp38-musllinux_1_1_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pyfastx-2.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyfastx-2.1.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

pyfastx-2.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pyfastx-2.1.0-cp38-cp38-macosx_11_0_arm64.whl (722.9 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyfastx-2.1.0-cp38-cp38-macosx_10_9_x86_64.whl (791.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyfastx-2.1.0-cp38-cp38-macosx_10_9_universal2.whl (1.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

pyfastx-2.1.0-cp37-cp37m-win_amd64.whl (639.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyfastx-2.1.0-cp37-cp37m-win32.whl (535.5 kB view details)

Uploaded CPython 3.7m Windows x86

pyfastx-2.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

pyfastx-2.1.0-cp37-cp37m-musllinux_1_1_i686.whl (1.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

pyfastx-2.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ ARM64

pyfastx-2.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyfastx-2.1.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

pyfastx-2.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pyfastx-2.1.0-cp37-cp37m-macosx_10_9_x86_64.whl (791.8 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyfastx-2.1.0-cp36-cp36m-win_amd64.whl (685.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

pyfastx-2.1.0-cp36-cp36m-win32.whl (566.4 kB view details)

Uploaded CPython 3.6m Windows x86

pyfastx-2.1.0-cp36-cp36m-musllinux_1_1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

pyfastx-2.1.0-cp36-cp36m-musllinux_1_1_i686.whl (1.1 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

pyfastx-2.1.0-cp36-cp36m-musllinux_1_1_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ ARM64

pyfastx-2.1.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pyfastx-2.1.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (1.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

pyfastx-2.1.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pyfastx-2.1.0-cp36-cp36m-macosx_10_9_x86_64.whl (798.0 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pyfastx-2.1.0.tar.gz.

File metadata

  • Download URL: pyfastx-2.1.0.tar.gz
  • Upload date:
  • Size: 260.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyfastx-2.1.0.tar.gz
Algorithm Hash digest
SHA256 24d5e17921ac372ebba6b9e144689a322c01163d03ab33c45214bb07f5224129
MD5 ea2da04bc5d665f598c3ce111b93cfb9
BLAKE2b-256 b7ac389dbb7c263cfd25d01485a270c7477cbad9c02bac3e3886b083e384cfcf

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pyfastx-2.1.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 639.5 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyfastx-2.1.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9fdc419021f511f8fbfa99a5ebeb584af7cf9a30321b0d889ffbb04cd1635b0b
MD5 3686e6d217d46a103703e557f0e42a87
BLAKE2b-256 282c63d49226a780eaa6c42f00e01796838f10509c6b72d88f00804a99cef7b3

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: pyfastx-2.1.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 535.8 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyfastx-2.1.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 de06f8b8d4c5090d2bbef92db666f788c29a753005d5ec00afc12527520821c7
MD5 da5e34b3b184889e7bb00b451b886ea3
BLAKE2b-256 a9b4422e03f2d91d3778298a005a9d2e97576aa2f5f6ce01bfc7299bb04abfbe

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 08669a0878a0022ada299c2cf5e9478f6c839b992cc5ebf7467042b9df9451d1
MD5 9013af058cc00bee82b92bbb8b0e3723
BLAKE2b-256 85c70c5bd89e4801487fb359c6e22549a8c1f8619351060a0543c11071209948

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp312-cp312-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp312-cp312-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 9f0431374a62ee6b294db6ce02dec9dc7d969bdaaad110f4c75e8981e4074894
MD5 11ed361e2d657c40c6388a8a77e4bbe8
BLAKE2b-256 04dd263eded5e05699dc53aeac549cd4405429c757908e4d804df8180ea44cc9

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 fad29abc15270718be4ce8ff73f376b38c635c2bfcafea5fde62a40cb7d63341
MD5 33cbec18348ec94ad1e49539195114d2
BLAKE2b-256 8f6dbac376b852a7be7e89d4e28695ba7f12113540368c41cf06044f3db2fe2d

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bca5d9f56cb616d2933ca3e4bd5960278ff02461a7d835c4c1dca2fde4237e73
MD5 de4c7fa7b9ac2e1d6bae82db0a70459c
BLAKE2b-256 3607b8da1576f001da9fb2705b90adf01c2906be88b40291b0ef26ecea644ac1

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 806086a7f6f669a20b4ae28e4bfecfad282e27040c3542910efe28b497d93db5
MD5 1298452ef9c2a7d08e5e4445ecdef8b2
BLAKE2b-256 931c78a443abb9618f68a278790557c1cc540819252dbe68360c6fb5dfc61ef1

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 96f35a86fadbf50635134f2cc0e405f6b511ba25d85be3521d37824e4fd2feb5
MD5 5752465401170b630147e084e2032489
BLAKE2b-256 7e3f151cd6bd8ed8b0191d9544f6d2d67a0e7aec31e259f5f03beae4a985e9ef

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 07160a216ba3429e5a9a99bfc151b880231624ce1efb413cded1fa041c92096d
MD5 71e66156870bd2f57697e783a1cb6f44
BLAKE2b-256 3a7fc3b3846cae157d4d334a625071612bf2366e74a1cd58b50216a6274048e6

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5cc89377fd56dbd08f561e4dc3a2fc088ec1b18385145e664fc596e54bbc173a
MD5 73bcce59e21359fac8e0fbd0bb079b16
BLAKE2b-256 d2b8e38808944b9f2ecedd6663376328654fbc56354cf0ca2e6975853cb32303

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 cd587aa5ab00993f6b564ee1e5f6b5b21d443a559a4ab1cb0e92fd7397ebabe8
MD5 fe2602c1b28d199dc810c785e7680eaf
BLAKE2b-256 9eec636a8c34244f6707383d9020bee6c405193f0dba59e19ab510bf01081263

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyfastx-2.1.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 639.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyfastx-2.1.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 33c4fa5677de7d85478246ac2ee1f3498cf56118d150470e8bc562e534bf5da8
MD5 f2df58f133dcbcda27de38f0ea87e1e6
BLAKE2b-256 579281980a848b586d3b32928baa30efc55dbb0f54fa0b4508b4be5713b818e6

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: pyfastx-2.1.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 535.5 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyfastx-2.1.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 8286992e984153ff2198b1e9b186ec636d7aec732ad171892dfddb2d8662fc51
MD5 9bf161b56e8e1d925f27904e056e8540
BLAKE2b-256 d14a1db5d6172f6b538e374ba91e8a61bd62dc71868a4abefdef864830a68189

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3018d70dc7fc12d858c05b6fdfcc87f10f2566e19728e44e2c048bb1bf41bb75
MD5 122e171e0d41309f1c48706e11bbc109
BLAKE2b-256 ca3c302c03b9c4fc656573c09e374b06bd76176774088118604a5e698ebb8619

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 fa0a2924c70c3bf953d5dcbe13470e27c0f0da32ad4718a4acedfb60917ba1af
MD5 274d29740d08c7868da637762bcb9430
BLAKE2b-256 308aa3f4e2111758defa7fbddd26c9e6b5126674f97f8e1583d57b62306155e8

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 f04646fedbf633ca955ab0ba8ca1ef47dd78a9fa0c05f2f82225210ff7a4a6ec
MD5 60285600ae90b8f1571507b71976ddf5
BLAKE2b-256 242898f59774d625db25b65727bab6b96e7e0de1c2528ad09d2d118de2508b2e

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dc3085ae7f13b6acce5d63f016c46badcdcc49329fe4ca8651f009015f8ee2a3
MD5 743d47bc6bbbd97e43d0bb75f87499c2
BLAKE2b-256 01c694ea35d54cf0aa681f610ce5d2fc765f23670dc8e95817036a0131e41803

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1445e4ed637c29284aaa7e49e32052c9e8235b86e8c74e3d34d7d5ba5358ec64
MD5 3cf7d16d11905e9b09f0e7e756291ecb
BLAKE2b-256 8dcc265d73d7c4c57ec56671f6472d082c5c8adceb8e0b6cb2cc7f8b7325294d

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d846bc8ff595b9981637a8d8aa52d7f5e5583194246d118473fdf11dc442baf7
MD5 9335da62f490f9a5cdd1483c03b4a300
BLAKE2b-256 67d1b18fd783b34df22ff0f05008c75a315ad17cb7b0b4c9537556c173b42f44

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 709fe8b47cec32d3ffc02d88e01b8c332bff9a4a277755b98adaca215c7747ee
MD5 6e261ceedf366b3413ee53943944b74f
BLAKE2b-256 462fe459839b533dabd5cb58df1916274c4a74a373fdb8ef0f7eaa8310113dd3

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 484cd008da6edb40ba0e69cbfd8ed9a90a8bc96f8b3f53e7586f98a8a5e35015
MD5 8045a19d52836093606d4d60da5bd3b5
BLAKE2b-256 73ddd86e65f14b79db6d987107cf8b75af961e6dc31095e5b8bb2ef6b3cd8fe0

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 0984116eccf7d4a64957bc832f5299a19fa1e5a9e955c6319cf47f3d6bc3e56b
MD5 7352e6fe1340c0acb36fda60584dd1ea
BLAKE2b-256 eb8c952ec3a636b782594aa2ffd86a98684ed9766423de8184da145044c5ef07

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyfastx-2.1.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 639.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyfastx-2.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7115eb217400ff523e54d7ad5370184ce82024533ddd65e11250af057ba83067
MD5 f00c6f18f2cdca71683f1cb08a15320d
BLAKE2b-256 4257f971910a316f763014bc6c44d114973167e2921a939b57384397d7523702

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyfastx-2.1.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 535.5 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyfastx-2.1.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 32ca9490858f84de264e470f0b7d15309ff5d1571bcd6dea9486fba2cf93f33f
MD5 ba634baac7a9dd25d9cc1429d2fa9da0
BLAKE2b-256 b1088bbc2bd11f57b2afe70b1ab8a3f6101598d60e267a304164eeff174ad711

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 64b2c4e7989796ce037ed33bcfbb18a959d6eebd2538db7ed5ef332deedc95df
MD5 88878fb5fb945ef37f850d0f81fbf196
BLAKE2b-256 64f80b31bcc26c0a2689544e5a021b93ecee40c75fce9bc9f4e284f217e69079

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 78ee4676aa81cb2e4740ea33284d663897dab6c814259a102f39b885f570018d
MD5 9223df9110d14870f97a46f75eae8fc7
BLAKE2b-256 8c1e601331e5a5bf020167bc946daea9dee59a13042abdc611718622266ea887

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 87fc5c4678bec27d2bfb725b1b2371f40431edf02931731bb8120e27e6f27ec0
MD5 41f06f15f135446156c1d2f5ef0843bb
BLAKE2b-256 d1cf062563afb7215a581d316eae88ca7178bb6e76de82218977e7fb02568d10

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bc247801764f2eacece322d79066bd5f7e0c91fd041782d1cdde9a83d34bce48
MD5 46349dab90479b6f89e32154f4892604
BLAKE2b-256 a464258d82f80584609441eb0f3b3039e6e59b9b03acf94bd9e7bef424cb23f8

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1c1bfc04dd8791d4f9862bcebf82f2022b8c294af09a57413613256e6c6c8b08
MD5 060129a09e63f2b089c3b5321d0f3dd7
BLAKE2b-256 d66047d546e78cf7a857bf23f7b04959fea83ccdb9698d245e5042637f70673b

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 eac021a51ccd5e44c826a5c350a0e8278335b5590afc300cc869225f0d97116c
MD5 bfaf23c1c5e839c8776aaf4015cbc477
BLAKE2b-256 aca9f307b7d41efedafb55b04f08f7f5a6039120fe1319cd70e61825d9156e75

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bd5a7a73fd2ce85c5d6ef6f9930821102c59c1db8e98fd4507e3e47ab2df2a61
MD5 26ca6d800e600c0d40455c49473c655c
BLAKE2b-256 0ce432c0c70a85531a1a4665bf6d5de200f44ed6624fbd2812333daecdd92272

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5218e386488b4d610657c6beecd88f6ff9c65e9312c3fae1dc938eb20448b122
MD5 d070a437e9c2fdb38b5299b4bce0e84b
BLAKE2b-256 b33f3eacc79e377ae3fe0f18c7d61cb84f2813312c4af8e9743793ab100b8146

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 163bd917be0dae20f23cd2f0c7a567e50a0214d818bf92b496eab23ddc5c33a6
MD5 eb4080919b8f2a6e0dcca942e8efcbf8
BLAKE2b-256 77dfd40e804d1b839fd4f3b6282f08e54e683e04b29a1c90f1f5c9aa238d6200

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyfastx-2.1.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 639.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyfastx-2.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 dd26cfe3bc1b0aa48075b54d95a92fb9e7785d89418de534248ae1e4c0b7cad5
MD5 976c1731462751a9e54f6e3b87d1399f
BLAKE2b-256 a16620aaf5419ace1afe4c26e449c2908ba9de6299d22d35743b62acc11b4461

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyfastx-2.1.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 535.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyfastx-2.1.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 77dcaa88d26586fce775cd7766db574428d6a16dd66a1fcf729c29ef78d6f756
MD5 b37bece735cb3bc2b7eb534823971e95
BLAKE2b-256 c374346ede409275889e8e7f43b757b808b3b59ca3756da023a6aa09868b053e

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 25479fa90dc64360c11b98529bebde6002762710313e5fe13694c525d6809eba
MD5 49ac7825ef2cc9b6f2d32b73a841eb09
BLAKE2b-256 a87e3ff842648224ecd1fe63300ed2207b1f8914c2823eafa0de9366c3fb4642

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 181f337a21f33b444bbedd47c5cfc35f17dd6fb116b9893f63a36780548b48d5
MD5 d77efbea1a1a55d810beda5a19aab7d2
BLAKE2b-256 d66ecce9c8eb0aa5d706987fe33438defdb2983f13f4c9bb018f5c8df28dd559

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 5797212bed58a7fad287afeb3bc6cedd8d6fff8f8a05fa2dc13760b81af3d8c0
MD5 ffbd901397b180b0f5c6e6611372335c
BLAKE2b-256 cd60afb0ff120e1a182e4c0ac1ba15f4718e6611b78420a64a6bbca4246bb59b

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 add69a3135522dc18277de4e64aae57691603e5e2624f2e355a4f98bd18310fa
MD5 bfceceef5f2268ec85fec7d34ef956d2
BLAKE2b-256 0e2a693a3240757674a9f55930baff0f866389d5f43d76558c4f23f265f15a80

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8a47e613f39ab1e47a17d45ae25e8cfb0063234521933cfe8f5e107584f42459
MD5 e89fc3ea24368be6b13be76cf1cf82c3
BLAKE2b-256 4448047efd913a8f84473cbc0f590c65c2b5f6769ddaa87b58007bb5d9d87d62

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 244f9f5c254094a055d21ac1c10a0a62c13fee91e768270d0225b2cd2810c3b6
MD5 a9acc403a8d4cb34761748bafc5ff701
BLAKE2b-256 be8701e9d5995694aeab9b1d4e928e60f51add30fd077bb83a21a151ddca69c4

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 67261a8cb44ff455b8058d0114bb72a703d6c5b881336acd94e1210c9f849581
MD5 19097a4c9d67734537665feed75dedcb
BLAKE2b-256 73c4da9f46317abd507ec4abcd7a93f30fb9579929611b9161c988ed7b461fb2

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8da4defe7adcbed4e2069de961a3a662c53be86e857c1fc55098f0400793ead3
MD5 b01b27ef6556aa183c6329fa1744cf7c
BLAKE2b-256 0de88cb54ac7d0beac808f1f28ebd9aa02e5477e00f060f1b2ce64f8ea8f8410

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7cfa57d9deb15061f4a11c8a301d17850c0b6f820d810c07d26c3a94b2510c96
MD5 9d1606b08ef918e1ed57213f4af4a098
BLAKE2b-256 c9b1a632d221805d1eab2794f11c029d4ea5f940a0840a16aa1dc51f98d50adf

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyfastx-2.1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 639.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyfastx-2.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 49767649b42b4b5bc43cdb7341610e8df9382ee646557ad701065dd213141caa
MD5 752ccb70fc270c74ec0bd0d34e367a3c
BLAKE2b-256 9b4f1241a1e6053554f42da072ab4d4c0eb07829f84cda7c715e5cea82323c33

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyfastx-2.1.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 535.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyfastx-2.1.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 c9605b942228dca91a8cbc01539cb1d845ded9045f3938792d66c0829b7819ad
MD5 dd02afef0907fb6e3d8e9fb4c72f35e4
BLAKE2b-256 20e2ceb1bd1fde829a6b238d953929a9820dd2abb960ca95278d22b5fda19c0e

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cf5a657cc796259db4e7cac5ac282741430eee528cf45da1cbe3eed7b077fb73
MD5 71af5511835899f893db9562959ecacf
BLAKE2b-256 0553f5b646d856a78586ee87cb7c26af5faeb3d6d2ccfd17b1791f6e4c3a14b0

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d1e48f9bb739b72cf903699dfe111354bbf697c072f6080fc54e535bb34e9c78
MD5 9869b84c1aee53c620f953bc8e8db08e
BLAKE2b-256 3f0c28f6b5781962b4026a1935027d3bec6c96439f9355c60a3a0d2a92d4e835

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 de5c7ed83df8d6a1e3b333097861f4ce1c8fe624156be8bbbe275cd4f0d8e1ff
MD5 824af9104196631b390c20017eab31e8
BLAKE2b-256 a01f495af8a296e2d72a1aa5b05086e6d1d43d6329d5dcb565c3e5a9bcb31183

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 28fa81a154cf454c4cfff6189db1765d57974fe271e67afd725251db84c1bc8a
MD5 485d3721a4a007321a48b5f6c5ed7046
BLAKE2b-256 306110a9344bda672875d266b04b5bedab98e597b07139d77716e0694c5d3444

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d2255ab37bb1c8dfa5c3fc46ab8aa97eb1ec826c8d283bfe118f11e7addc85c3
MD5 455f02a70471d3924c80990dfd218570
BLAKE2b-256 fd21276d88c5b1cf6fc1c6f9f55a278787768cfeb9eae58e957520d18ee46891

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 51fea4dfef2b220274966fb1db460f4d1403babee6e85531e69c068de951a73c
MD5 f2dc7f293a0900100a36bcafa10f2d1d
BLAKE2b-256 09976e5c4a3faf303b27e0a0f360337b2582cf39b9b6a1033c2531c28559daf8

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 37d7ad5581530960c281e6f01ab6d5e4d5796d7b1957f72d73cf4868aa73206f
MD5 cc1c113cb653cfcf85e96ffc04ea6929
BLAKE2b-256 39db45eda75932bb87370e8d832e9b2f2882d86e1088051ee31e813bc4580691

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4149679c8ca27ea20b250555fbf760e08f62f67ffd4d40f14ecce53075a7392c
MD5 78f254d02120ea5c6a8507b3e8f4b4ac
BLAKE2b-256 fa516332e32f94ff458176aa6e231f13e73bc4703529b834d3186324fedb72a4

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 bb94d91d7bbb4f3dcc34cd5dfbd15eb5d13af13b50b1dbf474ba133da4bbd30a
MD5 00ffb16b9b08903c7077d1beb747fc46
BLAKE2b-256 3a19f626be42a4496e8c3f2715a7ecb6a1875f0b22c0301e158e5dac738a312f

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyfastx-2.1.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 639.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyfastx-2.1.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1697d1ef9efa9beea9045ba1d9a1d491ac32560a9c47d47cad7afa472277730b
MD5 690b14d2bb1f1cdb7f37d24b22dfb863
BLAKE2b-256 6e69e380368dd6549726a554c4c93e178bc1c7b9f63e67a5d00643a37b99b372

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyfastx-2.1.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 535.5 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyfastx-2.1.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 e612a6c920c8827f0edd1ae117f531d8e8a91fab6f27ff4547061fb3dd360eeb
MD5 db9181b3dbeaa4fe1924eaa6a7eed745
BLAKE2b-256 0c29d139f82fd63941c6023ec16d566a5eb08e9f41eee39bc7e5be2ef36a8848

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f980005f240e3bf65201303c8facd6323c3741f2bbed5ab1cf7d7512e926c966
MD5 79a495b17392380f57ab8f9d3ef376cf
BLAKE2b-256 6e4958accaeb14b20412ee6a862bf531486287bbd41fde4296b62aa89457debd

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 9ef8dcfc6cc0706ee79da17b84aa74c552f42bf7f44ba13a80c4218f509e5b78
MD5 094e0f9877852ca44a23336a87c96431
BLAKE2b-256 5d3257186971e8a0c74a53ba6d7a0ab5ed5b572d4e62af7b30f1f4686e732299

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 19ea90676459fbd7aeeb5406a4187bb85870414f26ee932223789a670daf0b7c
MD5 1b2afe042ec09d7c5138380ee8efe173
BLAKE2b-256 8fbaf17aba505ec5a1ea7a93be5b240d2c7f769a3b57132c735ec4baefefbe0d

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 da5e2053237e9884b5f3200389bb01f2e29390c3ed1ef89264c1f288b89f23bb
MD5 d1672fc880f642d14ff15dd9e2facc8e
BLAKE2b-256 f8866cfb8b0b52c593167a4b70c8336c2877851863b7decc3751b66245acf223

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a4e0584fa4e917c678f19c1dc6c748390ddc1696d2cc9b2b1cf887997db65388
MD5 61acd80206a90ebb78802ba5712f7cea
BLAKE2b-256 71f428f6a854a82a36e86a76a715f6908a5e234139480063ee9fb39942e6e88a

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e928372ef5908d9b627522fe68b4702edc95f59125fae77161a497245a7cfc39
MD5 146675cc3abfbc8cc6cac46bdb0fb35c
BLAKE2b-256 a25dd0724c1cfbadfee419896cdb7d1a84d883ce45e2a92888a58fc573cc8460

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ca55df380b1145c1cef877d910dfe4ce8ab34d61d65b52b8bd386f902148df76
MD5 1e39da8813b0150d86bb2a974c9747c1
BLAKE2b-256 91d4b99a121e0e050bda796d1a2dd2405bf2e889b80e787ced49b3465182117e

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pyfastx-2.1.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 685.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyfastx-2.1.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 9cd13aecaf5dc36450dc57dd3b5847cf725903643f2bb56a8f1e8978d7d2f626
MD5 27ef6ac41b071d86edaf3f2511ba32bc
BLAKE2b-256 f17ab65ac133d74821ecc98ab16259997b0f27ad9406779b23192051da42f530

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: pyfastx-2.1.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 566.4 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pyfastx-2.1.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 5dd3bb5108eaa9af7cc40e69a030bf3751f7e855824bd3cb387e94080b00a5e0
MD5 641ad48ec0ad7a28939defc2736bf130
BLAKE2b-256 e1276c09d02919566b868637426e1967826c9d03f8770f685233b31c497f3ed6

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 67ed8c1a6e898d388acfb3f14810829e3c6614720dfe2324b562a8ae97a584fb
MD5 05d5ed5acff5d4207af2380164d35848
BLAKE2b-256 973090dadbf1b93a58c6e2b38811b0ee740521557153f96ccd96ab730b873261

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 50acff5ca38602a0d3eb07ba59ed365fccbf652ec1a55bb811398d374f00afa0
MD5 8e4cc3d8f4f5f1fd11626fdd0ee52ec7
BLAKE2b-256 17d3cc47ec8984d88f10d4a5e605b070aa89cb0e9d9069802e7479df9c3383fb

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp36-cp36m-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp36-cp36m-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 4802e94dea2c4fed8551d11271d5d77900bf2cda12fd2eeb32aec4d5f3f098c6
MD5 91953eb14bb14b8c2d04ed461196eb07
BLAKE2b-256 8e0502f75fda09e081cd4bb6e61edeb7f7d7a116c0b1da2b89ea4e8cdd4591f9

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e36f6a76cc0a13617c52526f08d9942d31cd2fc6383339313eab1e7e0ccce467
MD5 b2d4d76df4bc1a7cef1af755cedc9ceb
BLAKE2b-256 33f78bb50d71f2aa7767040ffd9bbc390ed1189c4d79b756f6fe2a506818212c

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fed774bc005e111d042f8b67a448e4436a8c5f670755afa325d16204bf9fe79a
MD5 5c56f3d49840d657aac9416b6e8156e0
BLAKE2b-256 b8b4d117bee4b06ff46257f090a46906f4b7e959971d7af7c961532582d5022d

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ff2e94a2e060a470bba2907f84fa8567f9a560a053a788bb33185ead65094c99
MD5 30f9923534f6c91ed28cbb422a7c6bfa
BLAKE2b-256 0c1bf4c8db834ac6c9addf9bafd4c638f71b799e255966fc6d89c07f5438a972

See more details on using hashes here.

File details

Details for the file pyfastx-2.1.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.1.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a86c85ac0e4644908e39a7df6aa7725ce09fdb0bbe2a344d1e315c23d538653e
MD5 d8c69b53f56523c8b0a61693bbf874c7
BLAKE2b-256 d300544f673c598e4152fefb72c8674d0dcb334449451b4e2f74fbf9cbae7fe5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page