Skip to main content

Python implementation of FitIt software to fit spectra extended with additional features

Project description

Logo

pyFitIt

Python implementation of FitIt software to fit X-ray absorption near edge structure (XANES) and other spectra. The python version is extended with additional features: machine learning, automatic component analysis, joint convolution fitting and others.

PyFitIt website

Features

  • Uses ipywidgets to construct the portable GUI
  • Calculates spectra by FDMNES or FEFF or ADF or pyGDM
  • Interpolates spectra in order to speedup fitting. Support different types of interpolation point generation: grid, random, IHS, adaptive and various interpolation methods including machine learning algorithms
  • Using multidimensional interpolation approximation you can vary parameters by sliders and see immediately theoretical spectrum, which corresponds to this geometry. Fitting can be performed on the basis of visual comparison with experiment or using automatic procedure and quantitative criteria.
  • Supports direct prediction of geometry parameters by machine learning
  • Includes automatic and semi-automatic component analysis

Installation

pip install pyfitit

Usage

See examples folder in this repository.

This project is developing thanks to

  • Grigory Smolentsev
  • Sergey Guda
  • Alexandr Soldatov
  • Carlo Lamberti
  • Alexander Guda
  • Oleg Usoltsev
  • Yury Rusalev
  • Andrea Martini
  • Alexandr Algasov
  • Danil Pashkov
  • Aram Bugaev
  • Mikhail Soldatov

If you like the software acknowledge it using the references below:

A.Martini, A.A. Guda, S.A. Guda, A.L. Bugaev, O.V. Safonova, A.V. Soldatov Machine Learning Powered by Principal Component Descriptors as the Key for Sorted Structural Fit of XANES // Phys. Chem. Chem. Phys., 2021

A. Martini, A. L. Bugaev, S. A. Guda, A. A. Guda, E. Priola, E. Borfecchia, S. Smolders, K. Janssens, D. De Vos, and A. V. Soldatov Revisiting the Extended X-ray Absorption Fine Structure Fitting Procedure through a Machine Learning-Based Approach // The Journal of Physical Chemistry A Article ASAP

Guda A.A., Guda S.A., Martini A., Kravtsova A.N., Algasov A., Bugaev A., Kubrin S.P., Guda L.V., Šot P., van Bokhoven J.A., Copéret C., Soldatov A.V. Understanding X-ray absorption spectra by means of descriptors and machine learning algorithms (2021) npj Computational Materials, 7 (1), art. no. 203

Kozyr E.G., Bugaev A.L., Guda S.A., Guda A.A., Lomachenko K.A., Janssens K., Smolders S., De Vos D., Soldatov A.V. Speciation of Ru Molecular Complexes in a Homogeneous Catalytic System: Fingerprint XANES Analysis Guided by Machine Learning (2021) Journal of Physical Chemistry C, 125 (50), pp. 27844 - 27852

A. Martini, A.A. Guda, S.A. Guda, A.L. Bugaev, O.V. Safonova, A.V. Soldatov "Machine Learning Powered by Principal Component Descriptors as the Key for Sorted Structural Fit of XANES" // Phys. Chem. Chem. Phys., 2021 DOI: 10.1039/D1CP01794B

A. Martini, A. A. Guda, S. A. Guda, A. Dulina, F. Tavani, P. D’Angelo, E. Borfecchia, and A. V. Soldatov. Estimating a Set of Pure XANES Spectra from Multicomponent Chemical Mixtures Using a Transformation Matrix-Based Approach // In: Di Cicco A., Giuli G., Trapananti A. (eds) Synchrotron Radiation Science and Applications. Springer Proceedings in Physics, vol 220. Springer, Cham. DOI: 10.1007/978-3-030-72005-6_6

A. Martini, S. A. Guda, A. A. Guda, G. Smolentsev, A. Algasov, O. Usoltsev, M. A. Soldatov, A. Bugaev, Yu. Rusalev, C. Lamberti, A. V. Soldatov "PyFitit: the software for quantitative analysis of XANES spectra using machine-learning algorithms" Computer Physics Communications. 2019. DOI: 10.1016/j.cpc.2019.107064

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

pyfitit-3.1.7-py3-none-any.whl (73.6 MB view details)

Uploaded Python 3

File details

Details for the file pyfitit-3.1.7-py3-none-any.whl.

File metadata

  • Download URL: pyfitit-3.1.7-py3-none-any.whl
  • Upload date:
  • Size: 73.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for pyfitit-3.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 4031ec29889d6565066a59530c7e81a7b5f865a283053d7f387dc4a53e7e3e59
MD5 83a8ab231e8a50f688dbd3694e0cae1c
BLAKE2b-256 7ab9a848b43efadfb004148dd789969b6b7c14ec37fe3bb4c0ad789ff81d4b0d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page