Skip to main content

Fast high dimensional fixed effect estimation following syntax of the fixest R package.

Project description

PyFixest: Fast High-Dimensional Fixed Effects Regression in Python

License PyPI - Python Version PyPI -Version image Ruff Pixi Badge All Contributors Downloads Downloads

PyFixest is a Python implementation of the formidable fixest package for fast high-dimensional fixed effects regression.

The package aims to mimic fixest syntax and functionality as closely as Python allows: if you know fixest well, the goal is that you won't have to read the docs to get started! In particular, this means that all of fixest's defaults are mirrored by PyFixest - currently with only one small exception.

Nevertheless, for a quick introduction, you can take a look at the documentation or the regression chapter of Arthur Turrell's book on Coding for Economists.

For questions on PyFixest, head on over to our PyFixest Discourse forum.

Features

  • OLS, WLS and IV Regression
  • Poisson Regression following the pplmhdfe algorithm
  • Multiple Estimation Syntax
  • Several Robust and Cluster Robust Variance-Covariance Estimators
  • Wild Cluster Bootstrap Inference (via wildboottest)
  • Difference-in-Differences Estimators:
  • Multiple Hypothesis Corrections following the Procedure by Romano and Wolf and Simultaneous Confidence Intervals using a Multiplier Bootstrap
  • Fast Randomization Inference as in the ritest Stata package
  • The Causal Cluster Variance Estimator (CCV) following Abadie et al.

Installation

You can install the release version from PyPI by running

# inside an active virtual environment
python -m pip install pyfixest

or the development version from github by running

python -m pip install git+https://github.com/py-econometrics/pyfixest

Benchmarks

All benchmarks follow the fixest benchmarks. All non-pyfixest timings are taken from the fixest benchmarks.

Quickstart

import pyfixest as pf

data = pf.get_data()
pf.feols("Y ~ X1 | f1 + f2", data=data).summary()
###

Estimation:  OLS
Dep. var.: Y, Fixed effects: f1+f2
Inference:  CRV1
Observations:  997

| Coefficient   |   Estimate |   Std. Error |   t value |   Pr(>|t|) |   2.5% |   97.5% |
|:--------------|-----------:|-------------:|----------:|-----------:|-------:|--------:|
| X1            |     -0.919 |        0.065 |   -14.057 |      0.000 | -1.053 |  -0.786 |
---
RMSE: 1.441   R2: 0.609   R2 Within: 0.2

Multiple Estimation

You can estimate multiple models at once by using multiple estimation syntax:

# OLS Estimation: estimate multiple models at once
fit = pf.feols("Y + Y2 ~X1 | csw0(f1, f2)", data = data, vcov = {'CRV1':'group_id'})
# Print the results
fit.etable()
                           est1               est2               est3               est4               est5               est6
------------  -----------------  -----------------  -----------------  -----------------  -----------------  -----------------
depvar                        Y                 Y2                  Y                 Y2                  Y                 Y2
------------------------------------------------------------------------------------------------------------------------------
Intercept      0.919*** (0.121)   1.064*** (0.232)
X1            -1.000*** (0.117)  -1.322*** (0.211)  -0.949*** (0.087)  -1.266*** (0.212)  -0.919*** (0.069)  -1.228*** (0.194)
------------------------------------------------------------------------------------------------------------------------------
f2                            -                  -                  -                  -                  x                  x
f1                            -                  -                  x                  x                  x                  x
------------------------------------------------------------------------------------------------------------------------------
R2                        0.123              0.037              0.437              0.115              0.609              0.168
S.E. type          by: group_id       by: group_id       by: group_id       by: group_id       by: group_id       by: group_id
Observations                998                999                997                998                997                998
------------------------------------------------------------------------------------------------------------------------------
Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001
Format of coefficient cell:
Coefficient (Std. Error)

Adjust Standard Errors "on-the-fly"

Standard Errors can be adjusted after estimation, "on-the-fly":

fit1 = fit.fetch_model(0)
fit1.vcov("hetero").summary()
Model:  Y~X1
###

Estimation:  OLS
Dep. var.: Y
Inference:  hetero
Observations:  998

| Coefficient   |   Estimate |   Std. Error |   t value |   Pr(>|t|) |   2.5% |   97.5% |
|:--------------|-----------:|-------------:|----------:|-----------:|-------:|--------:|
| Intercept     |      0.919 |        0.112 |     8.223 |      0.000 |  0.699 |   1.138 |
| X1            |     -1.000 |        0.082 |   -12.134 |      0.000 | -1.162 |  -0.838 |
---
RMSE: 2.158   R2: 0.123

Poisson Regression via fepois()

You can estimate Poisson Regressions via the fepois() function:

poisson_data = pf.get_data(model = "Fepois")
pf.fepois("Y ~ X1 + X2 | f1 + f2", data = poisson_data).summary()
###

Estimation:  Poisson
Dep. var.: Y, Fixed effects: f1+f2
Inference:  CRV1
Observations:  997

| Coefficient   |   Estimate |   Std. Error |   t value |   Pr(>|t|) |   2.5% |   97.5% |
|:--------------|-----------:|-------------:|----------:|-----------:|-------:|--------:|
| X1            |     -0.007 |        0.035 |    -0.190 |      0.850 | -0.075 |   0.062 |
| X2            |     -0.015 |        0.010 |    -1.449 |      0.147 | -0.035 |   0.005 |
---
Deviance: 1068.169

IV Estimation via three-part formulas

Last, PyFixest also supports IV estimation via three part formula syntax:

fit_iv = pf.feols("Y ~ 1 | f1 | X1 ~ Z1", data = data)
fit_iv.summary()
###

Estimation:  IV
Dep. var.: Y, Fixed effects: f1
Inference:  CRV1
Observations:  997

| Coefficient   |   Estimate |   Std. Error |   t value |   Pr(>|t|) |   2.5% |   97.5% |
|:--------------|-----------:|-------------:|----------:|-----------:|-------:|--------:|
| X1            |     -1.025 |        0.115 |    -8.930 |      0.000 | -1.259 |  -0.790 |
---

Call for Contributions

Thanks for showing interest in contributing to pyfixest! We appreciate all contributions and constructive feedback, whether that be reporting bugs, requesting new features, or suggesting improvements to documentation.

If you'd like to get involved, but are not yet sure how, please feel free to send us an email. Some familiarity with either Python or econometrics will help, but you really don't need to be a numpy core developer or have published in Econometrica =) We'd be more than happy to invest time to help you get started!

Contributors ✨

Thanks goes to these wonderful people:

styfenschaer
styfenschaer

💻
Niall Keleher
Niall Keleher

🚇 💻
Wenzhi Ding
Wenzhi Ding

💻
Apoorva Lal
Apoorva Lal

💻 🐛
Juan Orduz
Juan Orduz

🚇 💻
Alexander Fischer
Alexander Fischer

💻 🚇
aeturrell
aeturrell

📖 📣
leostimpfle
leostimpfle

💻 🐛
baggiponte
baggiponte

📖
Sanskriti
Sanskriti

🚇
Jaehyung
Jaehyung

💻
Alex
Alex

📖
Hayden Freedman
Hayden Freedman

💻 📖
Aziz Mamatov
Aziz Mamatov

💻
rafimikail
rafimikail

💻
Benjamin Knight
Benjamin Knight

💻
Dirk Sliwka
Dirk Sliwka

💻 📖
daltonm-bls
daltonm-bls

🐛
Marc-André
Marc-André

💻 🐛
Kyle F Butts
Kyle F Butts

🔣

This project follows the all-contributors specification. Contributions of any kind welcome!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyfixest-0.26.1.tar.gz (14.0 MB view details)

Uploaded Source

Built Distribution

pyfixest-0.26.1-py3-none-any.whl (2.2 MB view details)

Uploaded Python 3

File details

Details for the file pyfixest-0.26.1.tar.gz.

File metadata

  • Download URL: pyfixest-0.26.1.tar.gz
  • Upload date:
  • Size: 14.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.8

File hashes

Hashes for pyfixest-0.26.1.tar.gz
Algorithm Hash digest
SHA256 ba4f3cf345ceac1f49afa1e24647d810c25e6d58640c4ed440ea2dc6a13c0a71
MD5 f80e8a9400ce40112663110070681a69
BLAKE2b-256 bf22395b661c38b259ad49261b547c78d0511b4deb346309bd852aaefbe8d399

See more details on using hashes here.

File details

Details for the file pyfixest-0.26.1-py3-none-any.whl.

File metadata

  • Download URL: pyfixest-0.26.1-py3-none-any.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.8

File hashes

Hashes for pyfixest-0.26.1-py3-none-any.whl
Algorithm Hash digest
SHA256 90ec54fc8d9027b1d07f9b29947f0cc128839a4ce80889e4694ff51da0694edd
MD5 1b98b3872dee3066bbb7b9e19def213e
BLAKE2b-256 fbea051c7db55f3a8ee1e323b52be8a3474e7e84749293364f175e6d2ae5d736

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page