Skip to main content

Python wrapper of FastJet Core functionality with NumPy support

Project description

PyFJCore

build-wheels PyPI version python versions

PyFJCore is a Python wrapper of FastJet Core functionality with additional NumPy support. In contrast with the pyjet package, PyFJCore wraps all the methods/functions in fjcore and works with regular NumPy arrays instead of structured one. In contrast with the Python extension to the main FastJet library, this package can be built in a portable manner, including on Windows, and is available on PyPI.

Current version of fjcore: 3.4.0

Documentation

The FastJet documentation and manual contain helpful information for the classes and methods in PyFJCore. Not all FastJet classes are wrapped in PyFJCore, primarily just PseudoJet, JetDefinition, ClusterSequence, and Selector.

PseudoJet

Particles are represented in FastJet by PseudoJet objects. PseudoJets can be constructed from Cartesian momenta using the constructor, pyfjcore.PseudoJet(px, py, pz, e). They can be constructed from hadronic momenta as pyfjcore.PtYPhiM(pt, y, phi, [mass]), where the mass is optional and is taken to be zero if not present.

PseudoJets have a user index which is set to -1 by default. It can be set using the set_user_index(index) method and accessed with the user_index() method. An arbitrary Python object can also be associated with a PseudoJet using the set_python_info(pyobj) method, and accessed as python_info().

PseudoJetContainer

A PseudoJetContainer is useful for efficiently working with a list/vector of PseudoJets. In C++, it is a struct holding a std::vector<PseudoJet>, which allows the user to control SWIG's automatic coercion to/from native Python containers. Such coercion can be useful, but can also be inefficient since it requires a lot of copying. This coercion is still possible if desired by explicit tuple/list construction, e.g. tuple(pjcontainer) or list(pjcontainer). A PseudoJetContainer can be indexed, assigned to, or modified (by deleting elements) as if it were a list of PseudoJets. The wrapper code has been modified so that methods that accept const std::vector<PseudoJet> & will accept a PseudoJetContainer without any copying. The vector property can be used to access the underlying vectorPseudoJet (SWIG's wrapper of std::vector<fastjet::PseudoJet>) directly.

PseudoJetContainers con be constructed directly from an iterable of PseudoJets, or more commonly from NumPy arrays of particle kinematics (see the functions ptyphim_array_to_pseudojets, epxpypz_array_to_pseudojets, array_to_pseudojets below). Given a PseudoJetContainer, a NumPy array of the particle kinematics can be obtained using the methods ptyphim_array, epxpypz_array, and array, which correspond to the functions pseudojets_to_ptyphim_array, pseudojets_to_epxpypz_array, and pseudojets_to_array below. The user indices of the PseudoJets can be obtained as an integer NumPy array using the user_indices() method.

NumPy conversion functions

pyfjcore.ptyphim_array_to_pseudojets(ptyphims)

Converts a 2D array of particles, each as (pt, y, phi, [mass]), to PseudoJets (the mass is optional). Any additional features (columns after the initial four) of the array are set as the Python user info of the PseudoJets. This also sets the user_index of the PseudoJets to their position in the input array.

pyfjcore.epxpypz_array_to_pseudojets(epxpypzs)

Converts a 2D array of particles, each as (E, px, py, pz), to PseudoJets. Any additional features (columns after the initial four) of the array are set as the Python user info of the PseudoJets. This also sets the user_index of the PseudoJets to their position in the input array.

pyfjcore.array_to_pseudojets(particles, pjrep=pyfjcore.ptyphim)

Converts a 2D array of particles to PseudoJets. The format of the particles kinematics is determined by the pjrep argument. The PseudoJetRepresentation enum can take the values ptyphim, ptyphi, epxpypz. The first two values cause this function to invoke ptyphim_array_to_pseudojets and the third invokes epxpypz_array_to_pseudojets. Any additional features (columns) of the array are set as the Python user info of the PseudoJets. This also sets the user_index of the PseudoJets to their position in the input array.

pyfjcore.pseudojets_to_ptyphim_array(pseudojets, mass=True, phi_std=False, phi_ref=None, float32=False)

Converts a collection of PseudoJets (PseudoJetContainer or a Python iterable) to a 2D NumPy array of (pt, y, phi, [mass]) values, where the presence of the mass is determine by the keyword argument. phi_std determines if the phi values will be in the range $[-\pi,\pi)$ or $[0,2\pi)$. phi_ref, if not None, the phi values will lie within $\pi$ of phi_ref. The float32 argument controls if the resulting array will be single-precision (can be useful to avoid extraneous copying, if 32-bit floats will be ultimately used).

pyfjcore.pseudojets_to_epxpypz_array(pseudojets, float32=False)

Converts a collection of PseudoJets (PseudoJetContainer or a Python iterable) to a 2D NumPy array of (E, px, py, pz) values. The float32 argument controls if the resulting array will be single-precision (can be useful to avoid extraneous copying, if 32-bit floats will be ultimately used).

pyfjcore.pseudojets_to_array(pseudojets, pjrep=pyfjcore.ptyphim, float32=False)

Converts a collection of PseudoJets (PseudoJetContainer or a Python iterable) to a 2D NumPy array of particles in the representation determined by the pjrep keyword argument (valid options are pyfjcore.ptyphim, pyfjcore.epxpypz, pyfjcore.ptyphi). The float32 argument controls if the resulting array will be single-precision (can be useful to avoid extraneous copying, if 32-bit floats will be ultimately used).

pyfjcore.user_indices(pseudojets)

Extracts the user indices from a collection of PseudoJets (PseudoJetContainer or a Python iterable) and returns them as a NumPy array of integers.

Version History

1.0.x

1.0.0

  • Restored PseudoJetContainer by explicitly overloading methods where const std::vector<PseudoJet> & is accepted as an argument. Methods that previously returned std::vector<PseudoJet> now return PseudoJetContainer.
  • EventGeometry and Piranha packages are now built using pyfjcore to provide basic FastJet classes.
  • fjcore.cc is compiled into a shared library that is linked into the Python extension.

0.4.x

0.4.0

  • Incompatibility with FastJet Python extension fixed by adding virtual methods to PseudoJet, PseudoJetStructureBase, CompositeJetStructure, and ClusterSequenceStructure that were removed in fjcore due to lack of area support.

0.3.x

0.3.0

  • Memory leak (and subsequent crash) detected in EnergyFlow testing of PyFJCore. Removing PseudoJetContainer for now.

0.2.x

0.2.1

  • Fixed typechecking so that PseudoJetContainer is accepted in overloaded functions such as Selector::operator().

0.2.0

  • Built against older NumPy properly; added pyproject.toml file.

0.1.x

0.1.2

  • Renamed some PseudoJetRepresentation constants.
  • Updated documentation.

0.1.1

  • Fixed several bugs, including an inability to pass a PseudoJetContainer to the ClusterSequence constructor due to SWIG's typechecking.

0.1.0

  • First version released on PyPI.

References

PyFJCore relies critically on the fjcore header and source files, which in turn are created from the main FastJet library. So if you use this package in your research, please cite the FastJet package and publications.

Summary of changes to fjcore

  • fjcore.hh
    • Changed namespace from fjcore to fastjet to facilitate interoperability with the FastJet Python extension.
    • Added back virtual methods to PseudoJet, PseudoJetStructureBase, CompositeJetStructure, and ClusterSequenceStructure that were removed in fjcore due to lack of area support. This is critical for ensuring compatibility with the FastJet Python extension.
    • Wrapped some code in IsBaseAndDerived that SWIG cannot parse with #ifndef SWIG_PREPROCESSOR and #endif. Since SWIG doesn't need this code for anything, it parses the file correctly without affecting the actual compilation.
    • Changed templated ClusterSequence constructor to an untemplated version using PseudoJet as the former template type.
    • Added methods that accept PseudoJetContainer anywhere that const std::vector<PseudoJet> & is an argument.

fjcore README

// fjcore -- extracted from FastJet v3.4.0 (http://fastjet.fr)
//
// fjcore constitutes a digest of the main FastJet functionality.
// The files fjcore.hh and fjcore.cc are meant to provide easy access to these 
// core functions, in the form of single files and without the need of a full 
// FastJet installation:
//
//     g++ main.cc fjcore.cc
// 
// with main.cc including fjcore.hh.
//
// A fortran interface, fjcorefortran.cc, is also provided. See the example 
// and the Makefile for instructions.
//
// The results are expected to be identical to those obtained by linking to
// the full FastJet distribution.
//
// NOTE THAT, IN ORDER TO MAKE IT POSSIBLE FOR FJCORE AND THE FULL FASTJET
// TO COEXIST, THE FORMER USES THE "fjcore" NAMESPACE INSTEAD OF "fastjet". 
//
// In particular, fjcore provides:
//
//   - access to all native pp and ee algorithms, kt, anti-kt, C/A.
//     For C/A, the NlnN method is available, while anti-kt and kt
//     are limited to the N^2 one (still the fastest for N < 100k particles)
//   - access to selectors, for implementing cuts and selections
//   - access to all functionalities related to pseudojets (e.g. a jet's
//     structure or user-defined information)
//
// Instead, it does NOT provide:
//
//   - jet areas functionality
//   - background estimation
//   - access to other algorithms via plugins
//   - interface to CGAL
//   - fastjet tools, e.g. filters, taggers
//
// If these functionalities are needed, the full FastJet installation must be
// used. The code will be fully compatible, with the sole replacement of the
// header files and of the fjcore namespace with the fastjet one.
//
// fjcore.hh and fjcore.cc are not meant to be human-readable.
// For documentation, see the full FastJet manual and doxygen at http://fastjet.fr
//
// Like FastJet, fjcore is released under the terms of the GNU General Public
// License version 2 (GPLv2). If you use this code as part of work towards a
// scientific publication, whether directly or contained within another program
// (e.g. Delphes, MadGraph, SpartyJet, Rivet, LHC collaboration software frameworks, 
// etc.), you should include a citation to
// 
//   EPJC72(2012)1896 [arXiv:1111.6097] (FastJet User Manual)
//   and, optionally, Phys.Lett.B641 (2006) 57 [arXiv:hep-ph/0512210]
//
//FJSTARTHEADER
// $Id$
//
// Copyright (c) 2005-2021, Matteo Cacciari, Gavin P. Salam and Gregory Soyez
//
//----------------------------------------------------------------------
// This file is part of FastJet (fjcore).
//
//  FastJet is free software; you can redistribute it and/or modify
//  it under the terms of the GNU General Public License as published by
//  the Free Software Foundation; either version 2 of the License, or
//  (at your option) any later version.
//
//  The algorithms that underlie FastJet have required considerable
//  development. They are described in the original FastJet paper,
//  hep-ph/0512210 and in the manual, arXiv:1111.6097. If you use
//  FastJet as part of work towards a scientific publication, please
//  quote the version you use and include a citation to the manual and
//  optionally also to hep-ph/0512210.
//
//  FastJet is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//
//  You should have received a copy of the GNU General Public License
//  along with FastJet. If not, see <http://www.gnu.org/licenses/>.
//----------------------------------------------------------------------
//FJENDHEADER

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyFJCore-1.0.1.tar.gz (224.0 kB view details)

Uploaded Source

Built Distributions

PyFJCore-1.0.1-cp310-cp310-win_amd64.whl (333.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

PyFJCore-1.0.1-cp310-cp310-win32.whl (324.2 kB view details)

Uploaded CPython 3.10 Windows x86

PyFJCore-1.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (593.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

PyFJCore-1.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (602.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

PyFJCore-1.0.1-cp310-cp310-macosx_10_9_x86_64.whl (493.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

PyFJCore-1.0.1-cp39-cp39-win_amd64.whl (333.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

PyFJCore-1.0.1-cp39-cp39-win32.whl (323.7 kB view details)

Uploaded CPython 3.9 Windows x86

PyFJCore-1.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (594.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

PyFJCore-1.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (602.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

PyFJCore-1.0.1-cp39-cp39-macosx_10_9_x86_64.whl (493.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

PyFJCore-1.0.1-cp38-cp38-win_amd64.whl (333.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

PyFJCore-1.0.1-cp38-cp38-win32.whl (324.0 kB view details)

Uploaded CPython 3.8 Windows x86

PyFJCore-1.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (592.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

PyFJCore-1.0.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (601.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

PyFJCore-1.0.1-cp38-cp38-macosx_10_9_x86_64.whl (494.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

PyFJCore-1.0.1-cp37-cp37m-win_amd64.whl (333.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

PyFJCore-1.0.1-cp37-cp37m-win32.whl (323.7 kB view details)

Uploaded CPython 3.7m Windows x86

PyFJCore-1.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (591.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

PyFJCore-1.0.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (600.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

PyFJCore-1.0.1-cp37-cp37m-macosx_10_9_x86_64.whl (493.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

PyFJCore-1.0.1-cp36-cp36m-win_amd64.whl (423.2 kB view details)

Uploaded CPython 3.6m Windows x86-64

PyFJCore-1.0.1-cp36-cp36m-win32.whl (348.3 kB view details)

Uploaded CPython 3.6m Windows x86

PyFJCore-1.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (591.4 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

PyFJCore-1.0.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (600.8 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

PyFJCore-1.0.1-cp36-cp36m-macosx_10_9_x86_64.whl (493.7 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file PyFJCore-1.0.1.tar.gz.

File metadata

  • Download URL: PyFJCore-1.0.1.tar.gz
  • Upload date:
  • Size: 224.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for PyFJCore-1.0.1.tar.gz
Algorithm Hash digest
SHA256 2c3d629a8e18948e15e5d0facb6a8527ec79b4b1c15a4e0590413d50800a3459
MD5 5cddc41746173ba18ccdbad59abd0ddc
BLAKE2b-256 92dcd839b490cabc140f4eb31495d3e8c973d65f37134d38132b1a5c2d739ded

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-1.0.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 333.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 cf10d01aff8513d17ca90b0fd22cdf033adec8ed57c37586f6b0433a83c99686
MD5 2be39c02bb592fe61c6757ae5dc5d815
BLAKE2b-256 e483e49d2b87c952a4d03cb1c9b631324a7c8dac740803a7b40fa996db0298f3

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: PyFJCore-1.0.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 324.2 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 f92f28d6e0d581cca9a9b102424fdc9bb586892427d32735d21d56aed1a17083
MD5 f6385945b3877995776735a3c62a9bd5
BLAKE2b-256 36623a147189075fb0cdf6b297ac7a193b0e6b35fcaa2454f11eb22fc417e23c

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyFJCore-1.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c113d0770800c61e6a75c235761c7bc182d816afc21af863abfbc7f46fa217d1
MD5 18d0180d306a291e6a80f5a77a2e0d8b
BLAKE2b-256 9bb1476c9f160a626e33d8c3f3b1063d27fcc7207cb717d93fd40e2802f1f712

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyFJCore-1.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ab5538837284cf1e80873d89b5d5cbb96672ffb3893127a95bda5716cc095c34
MD5 4c2a4e5acd01a82406e81889adf89978
BLAKE2b-256 49c3a0909e207be05480cf06743d137fa594a83203a4858d6ee59dc29e5d09eb

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-1.0.1-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 493.6 kB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for PyFJCore-1.0.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bf1223745884f255cc20de60af20362e30f4f4231326740c3cf04c9ebad8219f
MD5 7c2bcf82c486e4dc18b80c97f5193411
BLAKE2b-256 cd0d1def92ee538f8535e79d98d8a66d1e76d9600c53a4061a5e74e66ec08300

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-1.0.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 333.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 330b2963860d3cee3450464e00bf5bfff94febbbbb789bc2f70c22341bb3ffda
MD5 029009bffcfd96ebc727fa4cae8292a8
BLAKE2b-256 27290d7be54d3d26572fee09193ed27b08772b269bcbe22a5aba465a65dbde27

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: PyFJCore-1.0.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 323.7 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 9172225573be3eac58e4fe0fa3dfc63a87b79cf283456ca00d4af31c3e8b60dd
MD5 e79718b51c5ab8009ccfc1fe15431390
BLAKE2b-256 2332430887d50708f1c584138466d3c4ffc720ac39d182e5b6c4d33cd5351ead

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyFJCore-1.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a0e2a585c0c87faf6d59bc58ca753ed37fd6bfd830011a549a9769d110b78d5b
MD5 51277c2e8575ff4e88e6e37a4fe2215c
BLAKE2b-256 aa70bc16b0f3388154f8660a6da1d2b3047057222d1581e821df0b2de56629d7

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyFJCore-1.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 943bb90d5a5f0a1a09148409457251ca5a6f8591858667398a0c57ac47280a0f
MD5 cb8fc4d40e19891d46123400969f2ba5
BLAKE2b-256 8118b926491d83e67f35cd28dd922c1042573237360166a2d0d77a3ec098969d

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-1.0.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 493.6 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for PyFJCore-1.0.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6c9a39c6e81582930ed826214e77d874ea8a710e3b65d54e698e4a943757c59f
MD5 744b8b961106215e32264ce8390b46bb
BLAKE2b-256 5d29ae81a8ec9cd2ced5cca55a7ae5e68724942ee804f7200d6feb2b7187b07e

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-1.0.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 333.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e8849325eab8710e9ddeabffeb390ae5e8558f8dd483ce824759eb3e8deb32ba
MD5 0d6f239b78141281216d58435c325b75
BLAKE2b-256 b1b1078617eb78eb93afc6332a8c0a2c63d1f1ae8c2f8cef318ff0846c6a218b

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: PyFJCore-1.0.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 324.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 5c5b897f54fa68b9ca7f5f413cd046a9aaa5baefddf52e9f246ed689e8e9b460
MD5 446675d539f5bdf2a98f6982e3ed37c2
BLAKE2b-256 97f0fa90502d6af57ceceb34307ec9a420b59ac574470c9006cd2e6e17e3548f

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyFJCore-1.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1377070e2faf231b0570b90147a3bcc41f8ae94c44d29214e47ce67ab441d2bf
MD5 172978719038af551c94429b89490bf5
BLAKE2b-256 1fe331b2e1f34a85302b4866941d3746428c344375fb01fdbb278dad039950af

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyFJCore-1.0.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a1ceca7734420d6a4d5603ab951080b0b402270a7cc7dd4a94caf21b60e53771
MD5 845d84cde6f3515c2a24afae9c8e6b44
BLAKE2b-256 3d4a81cbae490832e9b49d624782ab4f3b26940320e02d0a96b214556411e147

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-1.0.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 494.0 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for PyFJCore-1.0.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e1e434042f8713859fe0d44b14e935bce90c9519508753b8bf06ebf2ab590719
MD5 5c0133364a22ab2197c1e75f1f159d3e
BLAKE2b-256 f7ff9cc0f6683ed5a3dbbd5ea19943c6bdeb680b9ec1c53bd4d1823147170731

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-1.0.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 333.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 db7e5ace82a85c49db343e0de8405d2da7f51810ba9cb41e8c5fee9207caaa3a
MD5 f84bc30a5b352a4b78dde8997a79777a
BLAKE2b-256 e07f52d0931ede49bac5e3033236a775eecff93ae179bd10d0851350decaf8c7

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: PyFJCore-1.0.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 323.7 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 4eb97a7d4072476df8664b1f6d34ba5276da783fc223373683e90ce48fbabab4
MD5 63d8c7a667e94946bb205d82b6351e7f
BLAKE2b-256 9f4e3c2368430c0d5e46f7d32d98bdff8574078974924fe8fa3e9f564b416bf8

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyFJCore-1.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 17368cc7fdd65df47bedbf0b665b7d59f751b153613856dcada6cbd9611bf4da
MD5 de95c5b1487005cbb5cb0322ed18cc63
BLAKE2b-256 61eed57acf056476dcfb9747108f039cfb3aa4822d990d76938d03c546047a0d

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyFJCore-1.0.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 61db7f7eaa8e1fee6684043b1a0197be16afd24920c4d5fab1a1b8f8dc76b793
MD5 dc638dd084be891c37e0078ea1bc9838
BLAKE2b-256 98dc1f0ee3dd442493e896bc7fefd045e2dab3542a97c79e6cbe71c2fbfbda3b

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-1.0.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 493.7 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for PyFJCore-1.0.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 80884b2806967b6f46394f8e6b04d15b5e542e0ccf1d99793332c56230f76094
MD5 1f3640af2bd6ef5eabb4882a27b15535
BLAKE2b-256 d0cfd203e1c60f73c4b1e40e4f45c7166d5d1e81bbd38a7ce6d3529d929ac508

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: PyFJCore-1.0.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 423.2 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 f489010bdf291b8a855bf3dd4c3aa08d8981d5d948ac936dfed8b8bda032cc08
MD5 799b2c122db17d3c454099596d2cbbd8
BLAKE2b-256 17bf7ed6b74c45c39226a0dc31102a9d73f80bad8eff52b0941b14e53bec6a88

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: PyFJCore-1.0.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 348.3 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10

File hashes

Hashes for PyFJCore-1.0.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 40ae5a8151460a6c51da3ed64d0a72d35c24ca37e4968675b7136552db0f5f46
MD5 10e6dc26608939138859003d80361f43
BLAKE2b-256 3ff43f4888a4e42d0a96a843023220e300182a38b4f129f0dee5da914de660ea

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyFJCore-1.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aabf3b04ed70e813ad6f548bcf596a15f15a6976f1995278dc54cc3a4bfa8eef
MD5 b870ce005d86ab8d8045babfb97bb744
BLAKE2b-256 140a75dee967936ddc6641389e6b7c0be722e42003cfe74e5a2f4634877bad52

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for PyFJCore-1.0.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8f8da9bdf4a3578f748ebc4197bd2e23431d81ddffbc10a26ba8f6a97b52cd32
MD5 7701796b974823876a3db58e39fe3149
BLAKE2b-256 b8d0f6e0da2c7eb2ba1b18df1e9b69a85e6e80ec092dd302c5d018f3dda5df07

See more details on using hashes here.

File details

Details for the file PyFJCore-1.0.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyFJCore-1.0.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 493.7 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for PyFJCore-1.0.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f38d21037c8b6554dcb8bc3e964d53f0c05fbc18b82115b99324b63767745be8
MD5 4da4b27555ab4e4cef93b56be2962a68
BLAKE2b-256 8e476af44d3630d5fe00f1433338aeffe51704ae92978a8a013d4444d94e4090

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page