Skip to main content

Fast wavelet transform on the ball

Project description

https://img.shields.io/badge/GitHub-src_flaglet-brightgreen.svg?style=flat https://github.com/astro-informatics/src_flaglet/actions/workflows/cpp.yml/badge.svg https://readthedocs.org/projects/ansicolortags/badge/?version=latest https://img.shields.io/badge/License-GPL-blue.svg http://img.shields.io/badge/arXiv-1205.0792-orange.svg?style=flat http://img.shields.io/badge/arXiv-1110.6298-orange.svg?style=flat http://img.shields.io/badge/arXiv-2105.05518-orange.svg?style=flat

DESCRIPTION

The FLAGLET code provides functionality to perform fast and exact wavelet transform on the ball. More details may be found in the extensive documentation.

BASIC USAGE

First install FLAGLET for python by running

pip install pyflaglet

Then you can call it from any python script to perform forward and inverse flaglet transforms and their adjoints by

import pyflaglet as flaglet
import numpy as np

parameters = flaglet.flaglet_parameters(specify_parameters)

# Create a random complex signal (c indexing)
f_size = flaglet.flaglet_f_dim(parameters)
rng = np.random.default_rng()
f = rng.normal(size=(f_size)) + 1j*rng.normal(size=(f_size))

# Compute e.g. the Forward transform
f_wav, f_scal = flaglet.flaglet_forward(f, parameters)

AUTHORS

B. Leistedt, J. D. McEwen, and M. A. Price

REFERENCES

@article{price:2021:bayesian,
    author  = {Matthew~A.~Price and Jason~D.~McEwen},
    title   = {Bayesian variational regularization on the ball},
    journal = {ArXiv},
    eprint  = {arXiv:2105.05518},
    year    = 2021
}
@article{leistedt:2012:exact,
    author  = {Boris~Leistedt and Jason~D.~McEwen},
    title   = {Exact Wavelets on the Ball},
    journal = {IEEE Trans. Sig. Proc.},
    year    = 2012,
    volume  = {60},
    number  = {12},
    pages   = {6257-6269},
    doi     = {10.1109/TSP.2012.2215030},
}
@article{McEwen:2011:novel,
    author  = {Jason~D.~McEwen and Yves~Wiaux},
    title   = {A novel sampling theorem on the sphere},
    journal = {IEEE Trans. Sig. Proc.},
    year    = 2011,
    volume  = {59},
    number  = {12},
    pages   = {5876-5887},
    doi     = {10.1109/TSP.2011.2166394},
}
@article{Leistedt:2015:3dlensing,
    author  = {Boris~Leistedt and Jason~D.~McEwen and Thomas~D.~Kitching and Hiranya~V.Peiris},
    title   = {3D weak lensing with spin wavelets on the ball},
    journal = {Physical Review D.},
    year    = 2015,
    volume  = {92},
    number  = {12},
    pages   = {123010},
    doi     = {10.1103/PhysRevD.92.123010},
}
@article{McEwen:2015:3dlensing,
    author  = {Jason~D.~McEwen and Martin~Büttner and Boris~Leistedt and Hiranya~V.Peiris and Yves~Wiaux},
    title   = {A Novel Sampling Theorem on the Rotation Group},
    journal = {IEEE Sig. Proc. Letters},
    year    = 2015,
    volume  = {22},
    number  = {12},
    pages   = {2425-2429},
    doi     = {10.1109/LSP.2015.2490676},
}
@article{McEwen:2015:s2spinwavelets,
    author  = {Jason~D.~McEwen and Boris~Leistedt and Martin~Büttner and Hiranya~V.Peiris and Yves~Wiaux },
    title   = {Directional spin wavelets on the sphere},
    journal = {arXiv e-prints},
    eprint  = {1509.06749},
    year    = 2015,
}
@article{leistedt:2013:s2let,
    title   = {S2LET: A code to perform fast wavelet analysis on the sphere},
    author  = {Boris~Leistedt and Jason~D.~McEwen and Pierre~Vandergheynst and Yves~Wiaux},
    journal = {Astronomy & Astrophysics},
    volume  = {558},
    pages   = {A128},
    year    = 2013,
}

LICENSE

FLAGLET is released under the GPL-3 license (see LICENSE.txt).

FLAGLET package to perform fast wavelet transform on the sphere<br>
Copyright (C) 2021 Boris Leistedt & Jason McEwen & Matthew Price

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details (LICENSE.txt).

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA  02110-1301, USA.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

pyflaglet-1.0.0-cp38-cp38-macosx_10_14_x86_64.whl (732.3 kB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file pyflaglet-1.0.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pyflaglet-1.0.0-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 732.3 kB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for pyflaglet-1.0.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 249d0dc88ba7111507b31e7fe929e7d7c898c7f53b4b249047de1e8ac2d6aa55
MD5 a911d15930183e93fbcb1a705a69a1b2
BLAKE2b-256 c63024813cbf85107ce5d46f109f5dee9b4f1b380caa5d80346091a2396c8cad

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page