Skip to main content

Python bindings for the flagser C++ library.

Project description

https://www.giotto.ai/static/vector/logo.svg

Azure Azure-cov Azure-test

pyflagser

pyflagser s a python API for the flagser C++ library by Daniel Lütgehetmann which computes the homology of directed flag complexes. Please check out the original luetge/flagser GitHub repository for more information.

Website: https://giotto.ai

Project genesis

pyflagser is the result of a collaborative effort between L2F SA, the Laboratory for Topology and Neuroscience at EPFL, and the Institute of Reconfigurable & Embedded Digital Systems (REDS) of HEIG-VD.

Installation

Dependencies

pyflagser requires:

  • Python (>= 3.6)

  • numpy (>= 1.17.0)

  • scipy (>= 0.17.0)

For running the examples jupyter, matplotlib and plotly are required.

User installation

If you already have a working installation of numpy and scipy, the easiest way to install pyflagser is using pip

pip install -U pyflagser

Documentation

Contributing

We welcome new contributors of all experience levels. The Giotto community goals are to be helpful, welcoming, and effective. To learn more about making a contribution to pyflagser, please see the CONTRIBUTING.rst file.

Developer installation

C++ dependencies:
  • C++14 compatible compiler

  • CMake >= 3.9

  • Boost >= 1.56

Source code

You can check the latest sources with the command:

git clone https://github.com/giotto-ai/pyflagser.git
To install:

From the cloned repository’s root directory, run

pip install -e .

This way, you can pull the library’s latest changes and make them immediately available on your machine.

Testing

After installation, you can launch the test suite from outside the source directory:

pytest pyflagser

Changelog

See the RELEASE.rst file for a history of notable changes to pyflagser.

Contacts:

maintainers@giotto.ai

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyflagser-0.2.1-cp38-cp38-win_amd64.whl (147.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyflagser-0.2.1-cp38-cp38-manylinux2010_x86_64.whl (148.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pyflagser-0.2.1-cp38-cp38-macosx_10_14_x86_64.whl (159.3 kB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

pyflagser-0.2.1-cp37-cp37m-win_amd64.whl (148.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyflagser-0.2.1-cp37-cp37m-manylinux2010_x86_64.whl (149.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

pyflagser-0.2.1-cp37-cp37m-macosx_10_14_x86_64.whl (158.7 kB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

pyflagser-0.2.1-cp36-cp36m-win_amd64.whl (148.1 kB view details)

Uploaded CPython 3.6m Windows x86-64

pyflagser-0.2.1-cp36-cp36m-manylinux2010_x86_64.whl (149.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

pyflagser-0.2.1-cp36-cp36m-macosx_10_14_x86_64.whl (158.7 kB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file pyflagser-0.2.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyflagser-0.2.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 147.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8

File hashes

Hashes for pyflagser-0.2.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e33e762dc8b4dbd458b0572fae94fd4766cee0db85956abb09185b796527c68d
MD5 3cc685a77ea6f434f33ddc024ee9f2eb
BLAKE2b-256 b62b33ded4a0e3adb3d00edc8434d043d29faea0fe74fc29bd1b1a2d488dbf58

See more details on using hashes here.

File details

Details for the file pyflagser-0.2.1-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: pyflagser-0.2.1-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 148.3 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8

File hashes

Hashes for pyflagser-0.2.1-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 677818cce80a7eda6d2563daa081346953c08a084e6d10bf4bc004d24cf46e87
MD5 c9333f3c467871e31a355866b10cf48f
BLAKE2b-256 25bc5c89d7b794a3ab6c3eba36edab4508dadf59451938405d1eda5875299866

See more details on using hashes here.

File details

Details for the file pyflagser-0.2.1-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pyflagser-0.2.1-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 159.3 kB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8

File hashes

Hashes for pyflagser-0.2.1-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 38b43d6949bb72cd9d67c0363283113c601c58b45c332c4c4d08db6afafd084a
MD5 49c504b461e87a50a6874fedb9d77dd8
BLAKE2b-256 b15352ce7be05c849ed8438fa35d883a34ba7514c426164589875f9d28c62e80

See more details on using hashes here.

File details

Details for the file pyflagser-0.2.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyflagser-0.2.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 148.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8

File hashes

Hashes for pyflagser-0.2.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 55c1f48e4933f37d196f3aeada5d609b7be160796e8960f4a30a220c87a759b0
MD5 6012db33a6259e34b102cee65f241271
BLAKE2b-256 6306982570a887e78f2d5597e20851ddb2b0896e91c123c44883e07d6b015f22

See more details on using hashes here.

File details

Details for the file pyflagser-0.2.1-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: pyflagser-0.2.1-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 149.6 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8

File hashes

Hashes for pyflagser-0.2.1-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7e8b6cb3cc464c237788163a6c27ea5714c45fc52837aa3e561e550c221df808
MD5 b51c233cfb950157437f5a0d19b0df72
BLAKE2b-256 c107cdeff4338986a14d3b33c5d9b1981ff26c97ba40a6b7eee0bce5e3f9e595

See more details on using hashes here.

File details

Details for the file pyflagser-0.2.1-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pyflagser-0.2.1-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 158.7 kB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8

File hashes

Hashes for pyflagser-0.2.1-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5e5db76a5670eb7403b25d0af1ee035ca6d4072938a89efe7bf5072ec70fbdfc
MD5 253a42d35ef520cbb0872ec30f544e25
BLAKE2b-256 b90c533ca863f61ba6d84aa14a0a1cfe9689a63e376014d80768e142377cd2e6

See more details on using hashes here.

File details

Details for the file pyflagser-0.2.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pyflagser-0.2.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 148.1 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8

File hashes

Hashes for pyflagser-0.2.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 610f951dcf0dd89d8d7855c00a00824ff0c2f686d3b6ac7a6bdcf331a43d5bc4
MD5 fa1c741d8c189c4003ddec6216656f00
BLAKE2b-256 08cf243f5886324696fd6c0406a141fdb850b11b760a70ee3ddda03c581db484

See more details on using hashes here.

File details

Details for the file pyflagser-0.2.1-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: pyflagser-0.2.1-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 149.6 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8

File hashes

Hashes for pyflagser-0.2.1-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a2089161c2579729b3988db56c618b065863023aad64ac8da4aa018d8e3c51bd
MD5 e2fc60853783b4cbd8f6c2ca98b71bf2
BLAKE2b-256 7e309f441d6c708148474ed19451588f14040c379610d3f58dec328b715a38fe

See more details on using hashes here.

File details

Details for the file pyflagser-0.2.1-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pyflagser-0.2.1-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 158.7 kB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8

File hashes

Hashes for pyflagser-0.2.1-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1e0b6c99b184580a447dd4cdbbc45dd809534819dc2053013646529000b3ff3c
MD5 a3343884f3c5d787b38d307bdbbf572d
BLAKE2b-256 a60e6e48753360fa22e8bc4ae414b680f8bc9f4f08893751fd7b5e211302214b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page