Skip to main content

pyfld

Project description

pyfld

PyPI version Build Status Coverage Status

Python package for detecting line segments from images.

In order to extract line segments, Lee et al. (2014) devised a simple but reliable extractor inspired from Bay et al. (2005). Lee et al. (2014) described it as follows.

Given an image, Canny edges are detected first and the system extracts line segments as follows: At an edge pixel the extractor connects a straight line with a neighboring one, and continues fitting lines and extending to the next edge pixel until it satisfies co-linearity with the current line segment. If the extension meets a high curvature, the extractor returns the current segment only if it is longer than 20 pixels, and repeats the same steps until all the edge pixels are consumed. Then with the segments, the system incrementally merges two segments with length weight if they are overlapped or closely located and the difference of orientations is sufficiently small.

This package is designed to allow fine tuning of parameters based on this approach.

Instration

The currently recommended method of installation is via pip:

pip install pyfld

pyfld can also be installed by cloning the GitHub repository:

git clone https://github.com/tsukada-cs/pyfld
cd pyfld
pip install .

Dependencies

  • numpy >= 1.17.3
  • opencv >= 2.4

Sample Usage

Standard use case:

import numpy as np
from PIL import Image

from pyfld import FastLineDetector

img = Image.open("sample.png")
img = np.asarray(img.convert("L"))

length_threshold = 10
distance_threshold = 1.41421356
canny_th1 = 50
canny_th2 = 50
canny_aperture_size = 3
do_merge = False

fld = FastLineDetector(length_threshold, distance_threshold, canny_th1, canny_th2, canny_aperture_size, do_merge)
segments = fld.detect(img)
x1, y1, x2, y2 = np.array(segments).T

If the img is already binarized, set canny_aperture_size=0. Then, the Canny method is not used, and edge detection is performed directly on the input image.

Example of line segment visualization:

import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax.imshow(img, cmap="gray")
ax.plot([x1, x2], [y1, y2], c="r")
plt.show()
FLD_output

Reference

  • J. Han Lee, S. Lee, G. Zhang, J. Lim, W. Kyun Chung, I. Hong Suh. "Outdoor place recognition in urban environments using straight lines." In 2014 IEEE International Conference on Robotics and Automation (ICRA), pp.5550–5557. IEEE, 2014. [Link to PDF]
  • H. Bay, V. Ferraris, and L. Van Gool, “Wide-Baseline Stereo Matching with Line Segments.” In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol.1, no., pp.329-336, June 2005. [Link to PDF]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyfld-0.4.2.tar.gz (22.7 kB view details)

Uploaded Source

Built Distribution

pyfld-0.4.2-py3-none-any.whl (20.8 kB view details)

Uploaded Python 3

File details

Details for the file pyfld-0.4.2.tar.gz.

File metadata

  • Download URL: pyfld-0.4.2.tar.gz
  • Upload date:
  • Size: 22.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.0

File hashes

Hashes for pyfld-0.4.2.tar.gz
Algorithm Hash digest
SHA256 2b5e5d63666a3be98a9cb3849f0a55758c071d877f5c2e836ce4f4c852ce6d81
MD5 e0206c9660694030d7b2a11beb7137a0
BLAKE2b-256 4a50c14dc2beef95de5ec7cf40ec2e94290b12ede7de5caaf648be60f8423259

See more details on using hashes here.

File details

Details for the file pyfld-0.4.2-py3-none-any.whl.

File metadata

  • Download URL: pyfld-0.4.2-py3-none-any.whl
  • Upload date:
  • Size: 20.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.0

File hashes

Hashes for pyfld-0.4.2-py3-none-any.whl
Algorithm Hash digest
SHA256 8a8de58d8777233496041cb80c3332cf3b85bd749dbe4e07da34a950f0757be6
MD5 f13546bed34aa5db4a108ebd3a66e0bf
BLAKE2b-256 8fcfaab540f2be880d83af8f762c28409428d280ec2a470e6ccc608227061353

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page