Skip to main content

pyfld

Project description

pyfld

Build Status Coverage Status PyPI version

Python package for detecting line segments from images.

In order to extract line segments, Lee et al. (2014) devised a simple but reliable extractor inspired from Bay et al. (2005). Lee et al. (2014) described it as follows.

Given an image, Canny edges are detected first and the system extracts line segments as follows: At an edge pixel the extractor connects a straight line with a neighboring one, and continues fitting lines and extending to the next edge pixel until it satisfies co-linearity with the current line segment. If the extension meets a high curvature, the extractor returns the current segment only if it is longer than 20 pixels, and repeats the same steps until all the edge pixels are consumed. Then with the segments, the system incrementally merges two segments with length weight if they are overlapped or closely located and the difference of orientations is sufficiently small.

This package is designed to allow fine tuning of parameters based on this approach.

Instration

The currently recommended method of installation is via pip:

pip install pyfld

pyfld can also be installed by cloning the GitHub repository:

git clone https://github.com/tsukada-cs/pyfld
cd pyfld
pip install .

Dependencies

  • numpy >= 1.17.3
  • opencv >= 2.4

Sample Usage

Standard use case:

import numpy as np
from PIL import Image

from pyfld import FastLineDetector

img = Image.open("sample.png")
img = np.asarray(img.convert("L"))

length_threshold = 10
distance_threshold = 1.41421356
canny_th1 = 50
canny_th2 = 50
canny_aperture_size = 3
do_merge = False

fld = FastLineDetector(length_threshold, distance_threshold, canny_th1, canny_th2, canny_aperture_size, do_merge)
segments = fld.detect(img)
x1, y1, x2, y2 = np.array(segments).T

If the img is already binarized, set canny_aperture_size=0. Then, the Canny method is not used, and edge detection is performed directly on the input image.

Example of line segment visualization:

import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax.imshow(img, cmap="gray")
ax.plot([x1, x2], [y1, y2], c="r")
plt.show()
FLD_output

Reference

  • J. Han Lee, S. Lee, G. Zhang, J. Lim, W. Kyun Chung, I. Hong Suh. "Outdoor place recognition in urban environments using straight lines." In 2014 IEEE International Conference on Robotics and Automation (ICRA), pp.5550–5557. IEEE, 2014. [Link to PDF]
  • H. Bay, V. Ferraris, and L. Van Gool, “Wide-Baseline Stereo Matching with Line Segments.” In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol.1, no., pp.329-336, June 2005. [Link to PDF]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyfld-0.4.3.tar.gz (22.7 kB view details)

Uploaded Source

Built Distribution

pyfld-0.4.3-py3-none-any.whl (20.7 kB view details)

Uploaded Python 3

File details

Details for the file pyfld-0.4.3.tar.gz.

File metadata

  • Download URL: pyfld-0.4.3.tar.gz
  • Upload date:
  • Size: 22.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.0

File hashes

Hashes for pyfld-0.4.3.tar.gz
Algorithm Hash digest
SHA256 a538e98a5f31bfd6e541dd5db03c8439fa746f4c9ee9b1fa04e9230953fe06bc
MD5 96428df9a5d8024f5cd930af548a4680
BLAKE2b-256 330a09e5a9ace5b8faa377dcc63b78916672ffe2d1dc89155d8b96bfb271ccd8

See more details on using hashes here.

File details

Details for the file pyfld-0.4.3-py3-none-any.whl.

File metadata

  • Download URL: pyfld-0.4.3-py3-none-any.whl
  • Upload date:
  • Size: 20.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.0

File hashes

Hashes for pyfld-0.4.3-py3-none-any.whl
Algorithm Hash digest
SHA256 722fe135fb584134b761aad5ee2540c5613cd915800f2d721b5e6cecd8068fc6
MD5 34a4cd49c6ef17b4e5712c3e818cd313
BLAKE2b-256 64b8e5f75df4050c9f926bcc8dc1cf963f293fac5bf63b49a52d316d66adba25

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page