Skip to main content
Join the official 2020 Python Developers SurveyStart the survey!

A python module to process data for Frame Semantic Parsing

Project description

pyfn

GitHub release PyPI release Build Requirements Code Coverage FrameNet MIT License

Welcome to pyfn, a Python module to process FrameNet annotation.

pyfn can be used to:

  1. convert data to and from FRAMENET XML, SEMEVAL XML, SEMAFOR CoNLL, BIOS and CoNLL-X
  2. preprocess FrameNet data using a standardized state-of-the-art pipeline
  3. run the SEMAFOR, OPEN-SESAME and SIMPLEFRAMEID frame semantic parsers for frame and/or argument identification on the FrameNet 1.5, 1.6 and 1.7 datasets
  4. build your own frame semantic parser using a standard set of python models to marshall/unmarshall FrameNet XML data

This repository also accompanies the (Kabbach et al., 2018) paper:

@InProceedings{C18-1267,
  author = 	"Kabbach, Alexandre
		and Ribeyre, Corentin
		and Herbelot, Aur{\'e}lie",
  title = 	"Butterfly Effects in Frame Semantic Parsing: impact of data processing on model ranking",
  booktitle = 	"Proceedings of the 27th International Conference on Computational Linguistics",
  year = 	"2018",
  publisher = 	"Association for Computational Linguistics",
  pages = 	"3158--3169",
  location = 	"Santa Fe, New Mexico, USA",
  url = 	"http://aclweb.org/anthology/C18-1267"
}

Dependencies

On Unix, you may need to install the following packages:

libxml2 libxml2-dev libxslt1-dev python-3.x-dev

Install

pip3 install pyfn

Use

When using pyfn, your FrameNet splits directory structure should follow:

.
|-- fndata-1.x-with-dev
|   |-- train
|   |   |-- fulltext
|   |   |-- lu
|   |-- dev
|   |   |-- fulltext
|   |   |-- lu
|   |-- test
|   |   |-- fulltext
|   |   |-- lu
|   |-- frame
|   |-- frRelation.xml
|   |-- semTypes.xml

Conversion

pyfn can be used to convert data to and from:

  • FRAMENET XML: the format of the released FrameNet XML data
  • SEMEVAL XML: the format of the SEMEVAL 2007 shared task 19 on frame semantic structure extraction
  • SEMAFOR CoNLL: the format used by the SEMAFOR parser
  • BIOS: the format used by the OPEN-SESAME parser
  • CoNLL-X: the format used by various state-of-the-art POS taggers and dependency parsers (see preprocessing considerations for frame semantic parsing below)

As well as to generate the .csv hierarchy files used by both SEMAFOR and OPEN-SESAME parsers to integrate the hierarchy feature (see (Kshirsagar et al., 2015) for details).

For an exhaustive description of all formats, check out FORMAT.md.

HowTo

The following sections provide examples of commands to convert FN data to and from different formats. All commands can make use of the following options:

  1. --splits: specify which splits should be converted. --splits train will generate all train/dev/test splits, according to data found under the fndata-1.x/{train/dev/test} directories. --splits dev will generate the dev and test splits according to data found under the fndata-1.x/{dev/test} directories. This option will skip the train splits but generate the same dev/test splits that would have been generated with --splits train. --splits test will generate the test splits according to data found under the fndata-1.x/test directory, and skip the train/dev splits. The test splits generated with --splits test will be the same as those generated with the --splits train and --splits dev. Default to --splits test.
  2. --output_sentences: if specified, will output a .sentences file in the process, containing all raw annotated sentences, one sentence per line.
  3. --with_exemplars: if specified, will process the exemplars (data under the lu directory) in addition to fulltext.
  4. --filter: specify data filtering options (see details below).

For details on pyfn usage, do:

pyfn --help
pyfn generate --help
pyfn convert --help

From FN XML to BIOS

To convert data from FrameNet XML format to BIOS format, do:

pyfn convert \
  --from fnxml \
  --to bios \
  --source /abs/path/to/fndata-1.x \
  --target /abs/path/to/xp/data/output/dir \
  --splits train \
  --output_sentences \
  --filter overlap_fes

Using --filter overlap_fes will skip all annotationsets with overlapping frame elements, as those cases are not supported by the BIOS format.

From FN XML to SEMAFOR CoNLL

To generate the train.frame.elements file used to train SEMAFOR, and the {dev,test}.frames file used for decoding, do:

pyfn convert \
  --from fnxml \
  --to semafor \
  --source /abs/path/to/fndata-1.x \
  --target /abs/path/to/xp/data/output/dir \
  --splits train \
  --output_sentences

From FN XML to SEMEVAL XML

To generate the {dev,test}.gold.xml gold files in SEMEVAL format for scoring, do:

pyfn convert \
  --from fnxml \
  --to semeval \
  --source /abs/path/to/fndata-1.x \
  --target /abs/path/to/xp/data/output/dir \
  --splits {dev,test}

From BIOS to SEMEVAL XML

To convert the decoded BIOS files {dev,test}.bios.semeval.decoded of OPEN-SESAME to SEMEVAL XML format for scoring, do:

pyfn convert \
  --from bios \
  --to semeval \
  --source /abs/path/to/{dev,test}.bios.semeval.decoded \
  --target /abs/path/to/output/{dev,test}.predicted.xml \
  --sent /abs/path/to/{dev,test}.sentences

From SEMAFOR CoNLL to SEMEVAL XML

To convert the decoded {dev,test}.frame.elements files of SEMAFOR to SEMEVAL XML format for scoring, do:

pyfn convert \
  --from semafor \
  --to semeval \
  --source /abs/path/to/{dev,test}.frame.elements \
  --target /abs/path/to/output/{dev,test}.predicted.xml \
  --sent /abs/path/to/{dev,test}.sentences

Generate the hierarchy .csv files

pyfn generate \
  --source /abs/path/to/fndata-1.x \
  --target /abs/path/to/xp/data/output/dir

To also process exemplars, add the --with_exemplars option

Preprocessing and Frame Semantic Parsing

pyfn ships in with a set of bash scripts to preprocess FrameNet data with various POS taggers and dependency parsers, as well as to perform frame semantic parsing with a variety of open-source parsers.

Currently supported POS taggers include:

  • MXPOST (Ratnaparkhi, 1996)
  • NLP4J (Choi, 2016)

Currently supported dependency parsers include:

  • MST (McDonald et al., 2006)
  • BIST BARCH (Kiperwasser and Goldberg, 2016)
  • BIST BMST (Kiperwasser and Goldberg, 2016)

Currently supported frame semantic parsers include:

  • SIMPLEFRAMEID (Hartmann et al., 2017) for frame identification
  • SEMAFOR (Kshirsagar et al., 2015) for argument identification
  • OPEN-SESAME (Swayamdipta et al., 2017) for argument identification

To request support for a POS tagger, a dependency parser or a frame semantic parser, please create an issue on Github/Gitlab.

Download

To run the preprocessing and frame semantic parsing scripts, first download:

  • data.7z containing all the FrameNet splits for FN 1.5 and FN 1.7
wget http://129.194.21.122/~kabbach/pyfn/data.7z
  • lib.7z containing all the different external softwares (taggers, parsers, etc.)
wget http://129.194.21.122/~kabbach/pyfn/lib.7z
  • resources.7z containing all the required resources
wget http://129.194.21.122/~kabbach/pyfn/resources.7z
  • scripts.7z containing the set of bash scripts to call the different parsers and preprocessing toolkits
wget http://129.194.21.122/~kabbach/pyfn/scripts.7z

Extract the content of all the archives under a directory named pyfn. Your pyfn folder structure should look like:

.
|-- pyfn
|   |-- data
|   |   |-- fndata-1.5-with-dev
|   |   |-- fndata-1.7-with-dev
|   |-- lib
|   |   |-- bistparser
|   |   |-- jmx
|   |   |-- mstparser
|   |   |-- nlp4j
|   |   |-- open-sesame
|   |   |-- semafor
|   |   |-- semeval
|   |-- resources
|   |   |-- bestarchybrid.model
|   |   |-- bestarchybrid.params
|   |   |-- bestfirstorder.model
|   |   |-- bestfirstorder.params
|   |   |-- config-decode-pos.xml
|   |   |-- nlp4j.plemma.model.all.xz
|   |   |-- sskip.100.vectors
|   |   |-- wsj.model
|   |-- scripts
|   |   |-- CoNLLizer.py
|   |   |-- deparse.sh
|   |   |-- flatten.sh
|   |   |-- ...

Please strictly follow this directory structure to avoid unexpected errors. pyfn relies on a lot of relative path resolutions to make scripts calls shorter, and changing this directory structure can break everything

Setup NLP4J for POS tagging

To use NLP4J for POS tagging, modify the resources/config-decode-pos.xml file by replacing the models.pos absolute path to your resources/nlp4j.plemma.model.all.xz:

<configuration>
	...
	<models>
		<pos>/absolute/path/to/pyfn/resources/nlp4j.plemma.model.all.xz</pos>
	</models>
</configuration>

Setup DyNET for BIST or OPEN-SESAME

If you intend to use the BIST parser for dependency parsing or OPEN-SESAME for frame semantic parsing, you will need to install DyNET 2.0.2 via:

pip install dynet=2.0.2

If you experience problems installing DyNET via pip, follow:

https://dynet.readthedocs.io/en/2.0.2/python.html

Setup SEMAFOR

To use the SEMAFOR frame semantic parser, modify the scripts/setup.sh file:

# SEMAFOR options to be changed according to your env
export JAVA_HOME_BIN="/abs/path/to/java/jdk/bin"
export num_threads=2 # number of threads to use
export min_ram=4g # min RAM allocated to the JVM in GB. Corresponds to the -Xms argument
export max_ram=8g # max RAM allocated to the JVM in GB. Corresponds to the -Xmx argument

# SEMAFOR hyperparameters
export kbest=1 # keep k-best parse
export lambda=0.000001 # hyperparameter for argument identification. Refer to Kshirsagar et al. (2015) for details.
export batch_size=4000 # number of batches processed at once for argument identification.
export save_every_k_batches=400 # for argument identification
export num_models_to_save=60 # for argument identification

Setup SIMPLEFRAMEID

If you intend to use SIMPLEFRAMEID for frame identification, you will need to install the following packages (on python 2.7):

pip install keras==2.0.6 lightfm==1.13 sklearn numpy==1.13.1 networkx==1.11 tensorflow==1.3.0

Using the SEMEVAL PERL evaluation scripts

If you intend to use the SEMEVAL perl evaluation scripts, make sure to have the App::cpanminus and XML::Parser modules installed:

cpan App::cpanminus
cpanm XML::Parser

Using bash scripts

Each script comes with a helper: check it out with --help!

Careful! most scripts expect data output by pyfn convert ... to be located under pyfn/experiments/xp_XYZ/data where XYZ stands for the experiments number and is specified using the -x XYZ argument, and where the experiments directory is located at the same level as the scripts directory. This opinionated choice has proven extremely useful in launching scripts by batch on a large set of experiments as it avoids having to input the full path each time.

Make sure to use

pyfn convert \
  --from ... \
  --to ... \
  --source ... \
  --target /abs/path/to/pyfn/experiments/xp_XYZ/data \
  --splits ...

BEFORE calling preprocess.sh, prepare.sh, semafor.sh or open-sesame.sh

preprocess.sh

Use preprocess.sh to POS-tag and dependency-parse FrameNet splits generated with pyfn convert .... The helper should display:

Usage: ${0##*/} [-h] -x XP_NUM -t {mxpost,nlp4j} -p {semafor,open-sesame} [-d {mst,bmst,barch}] [-v]
Preprocess FrameNet train/dev/test splits.

  -h, --help                           display this help and exit
  -x, --xp      XP_NUM                 xp number written as 3 digits (e.g. 001)
  -t, --tagger  {mxpost,nlp4j}         pos tagger to be used: 'mxpost' or 'nlp4j'
  -p, --parser  {semafor,open-sesame}  frame semantic parser to be used: 'semafor' or 'open-sesame'
  -d, --dep     {mst,bmst,barch}       dependency parser to be used: 'mst', 'bmst' or 'barch'
  -v, --dev                            if set, script will also preprocess dev splits

Suppose you generated FrameNet splits for SEMAFOR using:

pyfn convert \
  --from fnxml \
  --to semafor \
  --source /path/to/fndata-1.7-with-dev \
  --target /path/to/experiments/xp_001/data \
  --splits train \
  --output_sentences

You can preprocess those splits with NLP4J and BMST using

./preprocess.sh -x 001 -t nlp4j -d bmst -p semafor

prepare.sh

Use prepare.sh to automatically generate misc. data required by the frame semantic parsing pipeline, such as gold SEMEVAL XML files for scoring, the framenet.frame.element.map and the hierarchy .csv files used by SEMAFOR, or the frames.xml and frRelations.xml files used by both SEMAFOR and OPEN-SESAME. The helper should display:

Usage: ${0##*/} [-h] -x XP_NUM -p {semafor,open-sesame} -s {dev,test} -f FN_DATA_DIR [-u] [-e]
Prepare misc. data for frame semantic parsing.

  -h, --help                                   display this help and exit
  -x, --xp              XP_NUM                 xp number written as 3 digits (e.g. 001)
  -p, --parser          {semafor,open-sesame}  frame semantic parser to be used: 'semafor' or 'open-sesame'
  -s, --splits          {dev,test}             which splits to score: dev or test
  -f, --fn              FN_DATA_DIR            absolute path to FrameNet data directory
  -u, --with_hierarchy                         if specified, will use the hierarchy feature
  -e, --with_exemplars                         if specified, will use the exemplars

Suppose you generated FrameNet splits for SEMAFOR using:

pyfn convert \
  --from fnxml \
  --to semafor \
  --source /path/to/fndata-1.7-with-dev \
  --target /path/to/experiments/xp_001/data \
  --splits train \
  --output_sentences

You can prepare SEMAFOR data using:

./prepare.sh -x 001 -p semafor -s test -f /path/to/fndata-1.7-with-dev

frameid.sh

Use frameid.sh to perform frame identification using SIMPLEFRAMEID. The helper should display:

Usage: ${0##*/} [-h] -m {train,decode} -x XP_NUM [-p {semafor,open-sesame}]
Perform frame identification.

  -h, --help                            display this help and exit
  -m, --mode                            train on all models or decode using a single model
  -x, --xp       XP_NUM                 xp number written as 3 digits (e.g. 001)
  -p, --parser   {semafor,open-sesame}  formalize decoded frames for specified parser

Suppose you generated FrameNet splits for SEMAFOR using:

pyfn convert \
  --from fnxml \
  --to semafor \
  --source /path/to/fndata-1.7-with-dev \
  --target /path/to/experiments/xp_101/data \
  --splits train \
  --output_sentences

After preprocessing, you can train the SIMPLEFRAMEID parser using:

./frameid.sh -m train -x 101

and decode (before decoding argument identification) using:

./frameid.sh -m decode -x 101 -p semafor

semafor.sh

Use semafor.sh to train the SEMAFOR parser or decode the test/dev splits. The helper should display:

Usage: ${0##*/} [-h] -m {train,decode} -x XP_NUM [-s {dev,test}] [-u]
Train or decode with the SEMAFOR parser.

  -h, --help                             display this help and exit
  -m, --mode            {train,decode}   semafor mode to use: train or decode
  -x, --xp              XP_NUM           xp number written as 3 digits (e.g. 001)
  -s, --splits          {dev,test}       which splits to use in decode mode: dev or test
  -u, --with_hierarchy                   if specified, parser will use the hierarchy feature

Suppose you generated FrameNet splits for SEMAFOR using:

pyfn convert \
  --from fnxml \
  --to semafor \
  --source /path/to/fndata-1.7-with-dev \
  --target /path/to/experiments/xp_001/data \
  --splits train \
  --output_sentences

After preprocessing and preparation, you can train the SEMAFOR parser using:

./semafor.sh -m train -x 001

and decode the test splits using:

./semafor.sh -m decode -x 001 -s test

open-sesame.sh

Use open-sesame.sh to train the OPEN-SESMAE parser or decode the test/dev splits. The helper should display:

Usage: ${0##*/} [-h] -m {train,decode} -x XP_NUM [-s {dev,test}] [-d] [-u]
Train or decode with the OPEN-SESAME parser.

  -h, --help                              display this help and exit
  -m, --mode              {train,decode}  open-sesame mode to use: train or decode
  -x, --xp                XP_NUM          xp number written as 3 digits (e.g. 001)
  -s, --splits            {dev,test}      which splits to use in decode mode: dev or test
  -d, --with_dep_parses                   if specified, parser will use dependency parses
  -u, --with_hierarchy                    if specified, parser will use the hierarchy feature

Suppose you generated FrameNet splits for OPEN-SESAME using:

pyfn convert \
  --from fnxml \
  --to bios \
  --source /path/to/fndata-1.7-with-dev \
  --target /path/to/experiments/xp_002/data \
  --splits train \
  --output_sentences \
  --filter overlap_fes

After preprocessing and preparation, you can train the SEMAFOR parser using:

./open-sesame.sh -m train -x 002

and decode the test splits using:

./open-sesame.sh -m decode -x 002 -s test

score.sh

Use score.sh to obtain P/R/F1 scores for frame semantic parsing on dev/test splits with the SEMEVAL scoring script, using gold of predicted frames. The helper should display:

Usage: ${0##*/} [-h] -x XP_NUM -p {semafor,open-sesame} -s {dev,test} -f {gold,predicted}
Score frame semantic parsing with a modified version of the SEMEVAL scoring script.

  -h, --help                           display this help and exit
  -x, --xp      XP_NUM                 xp number written as 3 digits (e.g. 001)
  -p, --parser  {semafor,open-sesame}  frame semantic parser to be used: 'semafor' or 'open-sesame'
  -s, --splits  {dev,test}             which splits to score: dev or test
  -f, --frames  {gold,predicted}       score with gold or predicted frames

Note that scoring is done with an updated version of the SEMEVAL perl script, in order to obtain more robust scores across setups. For a full account of the modifications, refer to (Kabbach et al., 2018) and to the perl scripts located under lib/semeval/.

To obtain scores for SEMAFOR using gold frames on test splits, use:

./score.sh -x XYZ -p semafor -s test -f gold

To obtain scores for SEMAFOR using predicted frames on test splits, use:

./score.sh -x XYZ -p semafor -s test -f predicted

Replication

The experiments directory provides a detailed set of instructions to replicate all results reported in (Kabbach et al., 2018) on experimental butterfly effects in frame semantic parsing. Those instructions can be used to compare the performances of different frame semantic parsers in various experimental setups.

Marshalling and Unmarshalling FrameNet XML data

pyfn provides a set of Python models to process FrameNet XML data. Those can be used to help you build you own frame semantic parser.

The core of the pyfn models is the AnnotationSet corresponding to an XML <annotationSet> tag. It stores various information regarding a given set of FrameNet annotation for a given target in a given sentence. The notable innovations are the labelstore and the valenceunitstore, which store FrameNet labels (FE/PT/GF) in their original formats, and in custom formats which may prove useful for frame semantic parsing.

Explore the various models under the pyfn.models directory of the pyfn package.

Unmarshalling FrameNet XML data

To convert a list of fulltext.xml files and/or lu.xml files to a generator over pyfn.AnnotationSet objects, with no overlap between train/dev/test splits, use:

import pyfn.marshalling.unmarshallers.framenet as fn_unmarshaller

if __name__ == '__main__':
  splits_dirpath = '/abs/path/to/framenet-1.x-with-dev/'
  splits = 'train'
  with_exemplars = False
  annosets_dict = fn_unmarshaller.get_annosets_dict(splits_dirpath,
                                                    splits, with_exemplars)

splits_dirpath should point at the directory containing train/dev/test splits directories (see detailed structure above).

get_annosets_dict will return a string to AnnotationSet generator dict. It will ensure no overlap between train/dev/test splits.

Calling get_annosets_dict on splits='test' will return a dictionary with a single 'test' key. Calling get_annosets_dict on splits='dev' will return a dictionary with two keys: 'dev' and 'test'. Calling get_annosets_dict on splits='train' will return a dictionary with three keys: 'train', 'dev' and 'test'.

To iterate over the list of AnnotationSet objects of each key, you can then do:

for (splits, annosets) in annosets_dict.items():
  print('Iterating over annotationsets for splits: {}'.format(splits))
  for annoset in annosets:
    print('annoset with #id = {}'.format(annoset._id))

Or simply, to iterate over a specific key values (such as train annosets):

for annoset in annosets_dict['train']:
    print('annoset with #id = {}'.format(annoset._id))

Note that for performance, annosets is not a list but a generator.

Unmarshalling OPEN-SESAME BIOS data

To convert a .bios file with its corresponding .sentences file to a generator over pyfn.AnnotationSet objects, use:

import pyfn.marshalling.unmarshallers.bios as bios_unmarshaller

if __name__ == '__main__':
  bios_filepath = '/abs/path/to/.bios'
  sent_filepath = '/abs/path/to/.sentences'
  annosets = bios_unmarshaller.unmarshall_annosets(bios_filepath,
                                                   sent_filepath)
  for annoset in annosets:
    print('annoset with #id = {}'.format(annoset._id))

Important! the .bios and .sentences files must have been generated with pyfn convert ... --to bios ... with the --filter overlap_fes parameter.

Unmarshalling SEMAFOR CONLL data

To convert a .frame.elements file with its corresponding .sentences file to a generator over pyfn.AnnotationSet objects, use:

import pyfn.marshalling.unmarshallers.semafor as semafor_unmarshaller

if __name__ == '__main__':
  semafor_filepath = '/abs/path/to/.frame.elements'
  sent_filepath = '/abs/path/to/.sentences'
  annosets = semafor_unmarshaller.unmarshall_annosets(semafor_filepath,
                                                      sent_filepath)
  for annoset in annosets:
    print('annoset with #id = {}'.format(annoset._id))

Unmarshalling SEMEVAL XML data

To convert a SEMEVAL .xml file with its corresponding .sentences file to a generator over pyfn.AnnotationSet objects, use:

import pyfn.marshalling.unmarshallers.semeval as semeval_unmarshaller

if __name__ == '__main__':
  xml_filepath = '/abs/path/to/semeval/.xml'
  annosetss = semeval_unmarshaller.unmarshall_annosets(xml_filepath)

By default unmarshall_annosets for SEMEVAL will return a generator over embedded annotationsets. To iterate over a single annotationset, use:

for annosets in annosetss:
  for annoset in annosets:
    print('annoset with #id = {}'.format(annoset._id))

To return a 'flat' list of annosets, pass in the flatten=True parameter:

import pyfn.marshalling.unmarshallers.semeval as semeval_unmarshaller

if __name__ == '__main__':
  xml_filepath = '/abs/path/to/semeval/.xml'
  annosets = semeval_unmarshaller.unmarshall_annosets(xml_filepath, flatten=True)
  for annoset in annosets:
    print('annoset with #id = {}'.format(annoset._id))

Marshalling to OPEN-SESAME BIOS

To convert a dict of splits to pyfn.AnnotationSet objects to OPEN-SESAME-style .bios, refer to pyfn.marshalling.marshallers.bios.marshall_annosets_dict

Marshalling to SEMAFOR CONLL

To convert a dict of splits to pyfn.AnnotationSet objects to SEMAFOR-style .frame.elements, refer to pyfn.marshalling.marshallers.semafor.marshall_annosets_dict

Marshalling to SEMEVAL XML

To convert a list of pyfn.AnnotationSet objects to SEMEVAL-style .xml, refer to pyfn.marshalling.marshallers.semeval.marshall_annosets

Marshalling to .csv hierarchy

To convert a list of relations to a .csv file, refer to pyfn.marshalling.marshallers.hierarchy.marshall_relations

Citation

If you use pyfn please cite:

@InProceedings{C18-1267,
  author = 	"Kabbach, Alexandre
		and Ribeyre, Corentin
		and Herbelot, Aur{\'e}lie",
  title = 	"Butterfly Effects in Frame Semantic Parsing: impact of data processing on model ranking",
  booktitle = 	"Proceedings of the 27th International Conference on Computational Linguistics",
  year = 	"2018",
  publisher = 	"Association for Computational Linguistics",
  pages = 	"3158--3169",
  location = 	"Santa Fe, New Mexico, USA",
  url = 	"http://aclweb.org/anthology/C18-1267"
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pyfn, version 1.3.7
Filename, size File type Python version Upload date Hashes
Filename, size pyfn-1.3.7.tar.gz (45.5 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page