Skip to main content

PyForce - A simple reinforcement learning library

Project description


🧐 About

A simple and modular reinforcement learning library based on PyTorch.

🏁 Getting Started

pip install pyforce-rl

🎈 Usage

from pyforce.env import wrap_openai_gym
from pyforce.nn import default_network_components
from pyforce.agents import PPOAgent
import gym
import torch

device="cuda:0" if torch.cuda.is_available() else "cpu"




agent.train(env,episodes=1000,train_freq=2048,eval_freq=50,render=True, batch_size=128,gamma=.99,tau=.95,clip=.2,n_steps=32,entropy_coef=.01)

🚀 Implement custom RL Agents

from pyforce.agents.base import BaseAgent
from torch import nn

class  MyAgent(BaseAgent):

def  __init__(self,observationprocessor,hiddenlayers,actionmapper,save_path=None):


	self.policy_net = nn.Sequential(observationprocessor, hiddenlayers, actionmapper)
	self.value_net = ...

def  forward(self, state):
	return  self.policy_net(state)

def  get_action(self, state, eval, args):
	#return action + possible additional information to be stored in the memory
	return  self(state).sample(), {} 

def  after_step(self, done, eval, args):
	if  not  eval:
		if  self.env_steps % args["train_freq"] == 0 and len(self.memory) > 0:
			#do training

	if done and eval:
		#do evaluation

⛏️ Built Using

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pyforce-rl, version 0.0.11
Filename, size File type Python version Upload date Hashes
Filename, size pyforce_rl-0.0.11-py3-none-any.whl (17.5 kB) File type Wheel Python version py3 Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring DigiCert DigiCert EV certificate Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page