Skip to main content

PyForce - A simple reinforcement learning library

Project description

Status


🧐 About

A simple and modular reinforcement learning library based on PyTorch.

🏁 Getting Started

pip install pyforce-rl

🎈 Usage

from pyforce.env import wrap_openai_gym
from pyforce.nn import default_network_components
from pyforce.agents import PPOAgent
import gym
import torch

device="cuda:0" if torch.cuda.is_available() else "cpu"

env=wrap_openai_gym(gym.make("LunarLanderContinuous-v2"))

observation_processor,hidden_layers,action_mapper=default_network_components(env)

agent=PPOAgent(
    observation_processor,
    hidden_layers,
    action_mapper,
    save_path="./evals/ppo_example",
    value_lr=5e-4,
    policy_lr=5e-4
).to(device)

agent.train(env,episodes=1000,train_freq=2048,eval_freq=50,render=True, batch_size=128,gamma=.99,tau=.95,clip=.2,n_steps=32,entropy_coef=.01)

🚀 Implement custom RL Agents

from pyforce.agents.base import BaseAgent
from torch import nn

class  MyAgent(BaseAgent):

def  __init__(self,observationprocessor,hiddenlayers,actionmapper,save_path=None):

	super().__init__(save_path)

	self.policy_net = nn.Sequential(observationprocessor, hiddenlayers, actionmapper)
	self.value_net = ...

def  forward(self, state):
	return  self.policy_net(state)

def  get_action(self, state, eval, args):
	#return action + possible additional information to be stored in the memory
	return  self(state).sample(), {} 

def  after_step(self, done, eval, args):
	if  not  eval:
		if  self.env_steps % args["train_freq"] == 0 and len(self.memory) > 0:
			#do training

	if done and eval:
		#do evaluation

⛏️ Built Using

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

pyforce_rl-0.0.8-py3-none-any.whl (17.4 kB view details)

Uploaded Python 3

File details

Details for the file pyforce_rl-0.0.8-py3-none-any.whl.

File metadata

  • Download URL: pyforce_rl-0.0.8-py3-none-any.whl
  • Upload date:
  • Size: 17.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.4

File hashes

Hashes for pyforce_rl-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 44426cd9b7df80cf8f5a4bc15f74c70878d367459342c82512ab3e398b5d2b20
MD5 4e9ae913f14a163710d837c8f5bd4343
BLAKE2b-256 7ac29aaa5b061ce84d5bc82d939ec066cbad2416bee49dde3a4d1b3b97b9fbfb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page