Skip to main content

cython wrapper around C++ library for fast triangular mesh reduction

Project description

Cython wrapper around sp4acerat’s quadrics mesh reduction algorithm.

Requirements:

  • Numpy

  • Cython (only for compilation, but not needed if installed from PyPI)

Installation :

pyfqmr can be installed via pip :

pip install pyfqmr

Compilation :

Run:

python setup.py install

Usage:

>>> #We assume you have a numpy based mesh processing software
>>> #Where you can get the vertices and faces of the mesh as numpy arrays.
>>> #For example Trimesh or meshio
>>> import pyfqmr
>>> import trimesh as tr
>>> bunny = tr.load_mesh('example/Stanford_Bunny_sample.stl')
>>> #Simplify object
>>> mesh_simplifier = pyfqmr.Simplify()
>>> mesh_simplifier.setMesh(bunny.vertices, bunny.faces)
>>> mesh_simplifier.simplify_mesh(target_count = 1000, aggressiveness=7, preserve_border=True, verbose=10)
iteration 0 - triangles 112402 threshold 2.187e-06
iteration 5 - triangles 62674 threshold 0.00209715
iteration 10 - triangles 21518 threshold 0.0627485
iteration 15 - triangles 9086 threshold 0.61222
iteration 20 - triangles 4692 threshold 3.40483
iteration 25 - triangles 2796 threshold 13.4929
iteration 30 - triangles 1812 threshold 42.6184
iteration 35 - triangles 1262 threshold 114.416
simplified mesh in 0.2518 seconds
>>> vertices, faces, normals = mesh_simplifier.getMesh()

Controlling the reduction algorithm

Parameters of the ‘’’simplify_mesh’’’ method that can be tuned.

  • target_count

    Target number of triangles.

  • update_rate

    Number of iterations between each update.

  • max_iterations

    Maximal number of iterations

  • aggressiveness

    Parameter controlling the growth rate of the threshold at each iteration when lossless is False.

  • preserve_border

    Flag for preserving the vertices situated on open borders. Applies the method described in this issue.

  • alpha

    Parameter for controlling the threshold growth. Exact implication described below.

  • K

    Parameter for controlling the threshold growth. Exact implication described below.

  • lossless

    Flag for using the lossless simplification method. Sets the update rate to 1 .

  • threshold_lossless

    Maximal error after which a vertex is not deleted, only when the lossless flag is set to True.

  • verbose

    Controls verbosity

Implications of the parameters of the threshold growth rate (when not in lossless mode) :

$$threshold = alpha * (iteration + K)^{agressiveness}$$

More information is to be found on Sp4cerat’s repository : Fast-Quadric-Mesh-Simplification

Huge thanks to Sp4cerat for making his code available!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyfqmr-0.2.1-cp312-cp312-win_amd64.whl (112.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

pyfqmr-0.2.1-cp312-cp312-win32.whl (96.7 kB view details)

Uploaded CPython 3.12 Windows x86

pyfqmr-0.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (874.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyfqmr-0.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (857.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pyfqmr-0.2.1-cp312-cp312-macosx_11_0_arm64.whl (127.8 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyfqmr-0.2.1-cp312-cp312-macosx_10_9_x86_64.whl (138.2 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyfqmr-0.2.1-cp311-cp311-win_amd64.whl (112.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyfqmr-0.2.1-cp311-cp311-win32.whl (96.7 kB view details)

Uploaded CPython 3.11 Windows x86

pyfqmr-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (875.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyfqmr-0.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (864.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyfqmr-0.2.1-cp311-cp311-macosx_11_0_arm64.whl (127.1 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyfqmr-0.2.1-cp311-cp311-macosx_10_9_x86_64.whl (137.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyfqmr-0.2.1-cp310-cp310-win_amd64.whl (112.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyfqmr-0.2.1-cp310-cp310-win32.whl (97.0 kB view details)

Uploaded CPython 3.10 Windows x86

pyfqmr-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (837.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyfqmr-0.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (824.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyfqmr-0.2.1-cp310-cp310-macosx_11_0_arm64.whl (127.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyfqmr-0.2.1-cp310-cp310-macosx_10_9_x86_64.whl (137.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyfqmr-0.2.1-cp39-cp39-win_amd64.whl (112.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyfqmr-0.2.1-cp39-cp39-win32.whl (97.6 kB view details)

Uploaded CPython 3.9 Windows x86

pyfqmr-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (838.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyfqmr-0.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (827.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyfqmr-0.2.1-cp39-cp39-macosx_11_0_arm64.whl (127.7 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyfqmr-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl (137.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyfqmr-0.2.1-cp38-cp38-win_amd64.whl (112.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyfqmr-0.2.1-cp38-cp38-win32.whl (97.2 kB view details)

Uploaded CPython 3.8 Windows x86

pyfqmr-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (846.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyfqmr-0.2.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (834.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pyfqmr-0.2.1-cp38-cp38-macosx_11_0_arm64.whl (127.4 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyfqmr-0.2.1-cp38-cp38-macosx_10_9_x86_64.whl (137.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyfqmr-0.2.1-cp37-cp37m-win_amd64.whl (112.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyfqmr-0.2.1-cp37-cp37m-win32.whl (97.0 kB view details)

Uploaded CPython 3.7m Windows x86

pyfqmr-0.2.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (808.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyfqmr-0.2.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (793.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pyfqmr-0.2.1-cp37-cp37m-macosx_10_9_x86_64.whl (136.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pyfqmr-0.2.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pyfqmr-0.2.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 112.0 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.0

File hashes

Hashes for pyfqmr-0.2.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 ad67ba1279d26d05ed0c434b1ecc3d0c4bf7d00031204fca333e43a360a237b1
MD5 d696aeaae86db6c810e3d2c9e5584ec4
BLAKE2b-256 7c27f00cab1778df5ca685a56722e9954c0090b204afc24476922ddf1d0cfe3d

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: pyfqmr-0.2.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 96.7 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.0

File hashes

Hashes for pyfqmr-0.2.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 e36daf5c8e7fb7104c22f19bcad7a5d93fe27545f81059dcc982a066733586ad
MD5 4dddb45bfadacbef7b7e71b8f1f14b5d
BLAKE2b-256 8ba6507c41823c0bc7f093a94be3b85696fdd6158e915a412cf7909fcd351b11

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfqmr-0.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 97872e9e0f6cde0778f36774d4fd5ca3edf3316a9b9c12717b05b8c4eef12707
MD5 51fcddd9828f5043d79a10de0d433f69
BLAKE2b-256 21f2c894031d60d2e4c9abc0f5b59ffc61354d621869a0ddf4177d21395fd412

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyfqmr-0.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5b6719cafcc264010d9bb924716e6926be1a678d2361b6277b7cafa384cacf9c
MD5 07fa8fb8b9c41680c035531b69ed614e
BLAKE2b-256 1f631e739f255feeb14761d939101f2d8f9a051795a29b4ab42bfae229caef30

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfqmr-0.2.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3b48b33f89ed9f470974cd56f38cd383de187d9bdd3c82e6b1e52b0661e66403
MD5 5822cd192fbb3f11eedcf90bdcbd3171
BLAKE2b-256 32d9389cd01af29bb2905ee0644302465931ac705ec574ffa5963937337c9972

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfqmr-0.2.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0f5657960c4f8fa4554ac23b495062e6122580298e62e45e24e1be43f5a26c71
MD5 57d7dc22b28fb0b74a6b6a0b50fe6d83
BLAKE2b-256 cc4fa75723e8fd81448418b2cae1fa76dfd92d98f41aa69f7d419aedccff466e

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyfqmr-0.2.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 112.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.0

File hashes

Hashes for pyfqmr-0.2.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8f10084165570d4b934fb260c8e3e76a20c93b52e77ad786ef6b0f61626a419c
MD5 a415c52b65c9cccc74f9d0d1e62155a9
BLAKE2b-256 4067ee26ced5f383611a712fc41b4773f017d3e1aa8cef0f7df0df6ab46b1c7a

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: pyfqmr-0.2.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 96.7 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.0

File hashes

Hashes for pyfqmr-0.2.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 910e6ca0aeb8531e398e72acb3f9389cf267e0e991f550dfed165f0e776017ee
MD5 98a2e77a535557ae4104030b1cf7eb21
BLAKE2b-256 eee1aa53b0f11d707f1425d518951ac3cee1a8f8a2e9658f286b3f7f8e4d8fb7

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfqmr-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b91f42ea59fdd274ebfd86415059f67ceb74cbc3d1d103f59a4c2795ddc0212a
MD5 8493df70d0f5ccaabc9bc763677208bc
BLAKE2b-256 920d8ac80018eb445e9397332ce6d394499529d13675a43882d5dbdeb367d587

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyfqmr-0.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 645007b5bd2ce9387a7070f82b66b47dae20ab0fe4745c33e406a033402cb54c
MD5 f75ff44103bcf10ebd0cd1a024863e91
BLAKE2b-256 83ace8c878bb8962c74866d2ab087af4f2c6062fca44fb7f63af3f368270cf03

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfqmr-0.2.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 eeea2b472215fea64b7f3bb2f0087c1ce32f6b551b334983452fa999ef70b4ba
MD5 6807183e05261983baf4e2e585215fbd
BLAKE2b-256 0c105ed1984da3a87f68e02e018e6f195263145582171d006810988bc07b400d

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfqmr-0.2.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 09e9f38d4ab8cb9871915ff52c2d04ae27f46025fe2000f4d87c394617d7cbba
MD5 b74bcc85cd26b15992ebb8370b533b48
BLAKE2b-256 a3f6b185e6d905d27f5875c6027feeab4b8453f151e866af25311dfb238fb450

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyfqmr-0.2.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 112.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.0

File hashes

Hashes for pyfqmr-0.2.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 dbfd4f99dde211f18d18cc3ea803a4804b9d86eb1c6167b61809fb087b68d171
MD5 c030223f50ada77a9376e02acb02eb3e
BLAKE2b-256 7c780a14276bd4efe17cca3b1a7856854c667cb2d2572a529ff9cf906b549368

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyfqmr-0.2.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 97.0 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.0

File hashes

Hashes for pyfqmr-0.2.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 e213154d4086359e4bdb2540ed86568fa08f8abe12172257cbf27252ba8f8e69
MD5 263aabe256f00b29a987d1cce4be2aac
BLAKE2b-256 e7c15b62991f964d98761f9ea72f98393b7bb307593c63a7e77070995801e40f

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfqmr-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 efc8ba0cbe99da1fbb51f4ccb4f101a7a684411f7a8629d9129c2a8be2cafc23
MD5 5f98a044b4dee8d99dbe596f1cca258a
BLAKE2b-256 12891f9e445745554de45b0a4be974ccb12ac60960896c83df8e02ff57b5e609

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyfqmr-0.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 04963071e05109703005bae647512c37a011587067b0105451d7dd4d2307fdaf
MD5 65d1e76b12dc30bd866065528d4da8e3
BLAKE2b-256 0ab3490733dbe5c026a1520da43a7af685b8481a00510fb5ed4e74454c51ef4e

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfqmr-0.2.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a6beabedc500adffe4498defcccdf9e2e86f8a874ba96403cb573a6404302ace
MD5 fb5b54c4fa63ddf02c0ac83066b38275
BLAKE2b-256 f2efaa5a3f797408c60a6d20d3daa2c43ebbd39abefc6ccad27f8b62da2ef143

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfqmr-0.2.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 215b1f12fc840097dc984bbfa76c9d4251030ec874b1e41a591c5e23b0c8846a
MD5 0c1b2cdd17396e95839d1fd83465f282
BLAKE2b-256 305fe43495b870cf3973d0ffa53a93fb98eba7d5eeaf86e86d99e53659d6c9f1

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyfqmr-0.2.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 112.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.0

File hashes

Hashes for pyfqmr-0.2.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e13854548a99669fc5569cb3842d11472a47463be48c16ef0600c1f021c7804a
MD5 ebde586dc2fe3054a1298cf6bca2e1a8
BLAKE2b-256 3828ff0d0de9d65d18d45b8d669a6c16f75ad87b41ccca7ee9aaa88f6a56324a

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyfqmr-0.2.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 97.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.0

File hashes

Hashes for pyfqmr-0.2.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 634621b400e850fa656b948e2dd738e989d51528ad07fc59dae9386e57adf9bd
MD5 d7385e322978b7b716df7e79ad1867e9
BLAKE2b-256 0563e2674078735eb0ae0eb442a4255c0415300f8c90fa0a9f5968a8f0abbfc2

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfqmr-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 adee07d15755ad4c145cf80598cc7129a857b18b879191e3fbd3e25d55278632
MD5 efd63030318f4c77d476bff2103ec6d4
BLAKE2b-256 7e5a8d66de3f3b85db4564f7cc780c6d0ea24bc2c1f8a402f468b8d3bdc39b1d

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyfqmr-0.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2dab6a53ff239b39ca4a078acc2b51733f586d6a2281ad5ee4bece0caa1a409a
MD5 1b8fad4ec3c9774d3c1e76cba7b2ee9a
BLAKE2b-256 9bf3080bff0e1d6710c028ae36fd0e359c94fecb5245f902008ad045742ffc8c

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfqmr-0.2.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2d0c7e8944bbfd8c3168d52156b76ae40c3336ffc85e0e2d25099d5507b2c87c
MD5 480357a1c2060fd831c5653d162597d2
BLAKE2b-256 3200ba586c5e528c9ecabdc021e75faa17f4a73e3445b8da3184d2da35509662

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfqmr-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 329aa99a383db99898eebcce4e538f048b7f1b7125176fd912fdf3facbe8b21d
MD5 7b5802b88ce4a1fc333dc116cd9200e8
BLAKE2b-256 7a70e76a4b4169bc1ccf290714db4a0ac3f372709f916463de5da43685c79399

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyfqmr-0.2.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 112.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.0

File hashes

Hashes for pyfqmr-0.2.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 24c786d39355817db16d5e33ea72eb7e4fdeb6a45ae8f3c05477efe0c106962c
MD5 0257728588fdd8264fed4275eb3eb2a3
BLAKE2b-256 e0ff69a65eae6db11b6e1030cdd7aaee458d8c7a627449cd92032506859a1e5c

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyfqmr-0.2.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 97.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.0

File hashes

Hashes for pyfqmr-0.2.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 5013b858683b5709ba7ccb552b14d43462b88be921f4d3c48e5a0747fab49e5c
MD5 55894bde471e103c991335e45bbf5159
BLAKE2b-256 06fd95d80ed6454375b4016be1c1c98eb0fd3af949513329622858dee1f4d04d

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfqmr-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8930b0580aac3ec68fcbe4562b29962552cfe46e189ea11f857922ca9f8ee4cf
MD5 61c5ba6ecc9059e748178662683bac4b
BLAKE2b-256 feb3fdb206b5aae9286eb3fae0ff8536571d27d9dfc4eb044902599a2ff42c13

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyfqmr-0.2.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f136f4634ff46f2475ad4ef33cf948481c4ef95b39119dcb26f6958c32bb8deb
MD5 5b390b21ad7dd3996345f7b52bcd4428
BLAKE2b-256 0443b6af370fb75f96f30fd215d16947ed03d1b6d24a4cd2af056cda310761e8

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfqmr-0.2.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8d869530fab4b8204d86132f023c0efeefffd9bdd6002a02cf62e46be832c963
MD5 0674e6061183161bdf6198cd3e207103
BLAKE2b-256 ab4bdceaaf2d4912680377619dcf31bd4601baa303d7ad93f8bd66edf1faf09d

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfqmr-0.2.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8b2bfb6afdb8d5de09dc1c9804f5eaca2621ddb80853cae9d814ec38aa88bdbc
MD5 acd33a09476811facceba151ec4bd4b4
BLAKE2b-256 61189c6c90f15569b5fb2bbbcd57cd1d323c390cb5a219291d6a094bf7c98db4

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyfqmr-0.2.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 112.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.0

File hashes

Hashes for pyfqmr-0.2.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8fabf879b7391a916c63349dfbdcf1b41176276d299f491c9b861072938f0653
MD5 9debdeb0752eff7c3c18137d07192171
BLAKE2b-256 39bf30385964d3a503ccf36d3a9bc94f688a2b4c445f0d949b527300fc534399

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyfqmr-0.2.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 97.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.0

File hashes

Hashes for pyfqmr-0.2.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 37abbd0745747016bc90d994415035d18b27b967d2ef1d9cfbaa28aa3d70c4d6
MD5 2ffdd64023c325439ed106f7fa856132
BLAKE2b-256 b81d309d0838c48bf6592585523abf35b109cb84b1358bcefed6b4131343f387

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfqmr-0.2.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a59c80fba956ea968e472d63a892638ea58419848876cb0dc02aed47abd9345d
MD5 a545d0348e485603ef96e203f53f62fd
BLAKE2b-256 3d139ad9ef98225fcc181f031503b166878ce03abe5902d9bb540168c5edbea3

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyfqmr-0.2.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ea6d26e1c79cd2333aff1ba85dd3c1434ed79a054ca35356faf2c1aed6173e46
MD5 bde4e5541c8c0c690e34f8afb31152f7
BLAKE2b-256 b61a7eff8945a5c83beada1185bb2f83b671f7aa4836b9afb329794d670857ef

See more details on using hashes here.

File details

Details for the file pyfqmr-0.2.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfqmr-0.2.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 13a01c89dd9c1e34cfe198b6be67007f1ef293b7e02e7de9110c983607658692
MD5 244b69ef68d22c63007ce65ff20ed21f
BLAKE2b-256 5467150d213aa6011829664984990dce79ee048835ecdbc4162185116dd19b0c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page