Skip to main content

Python Fractal Generation is a package for generating aesthetic fractal images quickly and (hopefully) easily

Project description

Authors

  • Ryther Anderson

Description

Python Fractal Generation is a package for making interesting/aesthetic fractal images quickly and (hopefully) easily. A multitude of unique fractals (from various views) can be generated using only a few functions. Each fractal generation function returns a result object containing an array of floats that can be converted into an image, the desired width/height in inches, and the number of pixels per inch. This result object can be passed to various image creation functions that assign colors to the fractal array based on a colormap (or creates RGB channels from the array).

Installation

pyfracgen can currently be installed from the following sources:

Git

git clone https://github.com/rytheranderson/pyfracgen.git
cd pyfracgen
pip install .

PyPi

pip install pyfracgen

Example Images

All the package functions can be accessed from a single import:

import pyfracgen as pf
from matplotlib import pyplot as plt

Mandelbrot Set

Image produced with this code:

# x and y boundaries, x being the real part and y being the imaginary part in the complex plane
xbound = (0.3602404434376143632361252444495 - 0.00000000000003,
          0.3602404434376143632361252444495 + 0.00000000000025)
ybound = (-0.6413130610648031748603750151793 - 0.00000000000006,
          -0.6413130610648031748603750151793 + 0.00000000000013)

mymap = pf.images.stack_cmaps(plt.cm.gist_gray, 50)
man = pf.mandelbrot(xbound, ybound, pf.updates.power, width=4, height=3, maxiter=5000, dpi=300)
pf.images.image(man, cmap=mymap, gamma=0.8)
plt.savefig('example_images/mandelbrot_ex.png')

Julia Set Animation

Animation produced with this code:

c_vals = np.array([complex(i, 0.75) for i in np.linspace(0.05, 3.0, 100)])
s = pf.julia_series(c_vals, (-1, 1), (-0.75, 1.25), pf.updates.magnetic_2, maxiter=100,
                    width=4, height=3, dpi=200)
pf.images.save_animation(s, gamma=0.9, cmap=plt.cm.gist_ncar,
                         filename='example_images/julia_animation_ex')

Markus-Lyapunov Fractal

Image produced with this code:

im = pf.lyapunov(string, xB, yB, maxiter=80, dpi=300, width=4, height=3)
pf.images.image(im, gamma=3.0, vert_exag=10000.0, cmap=plt.cm.gray)
plt.savefig('example_images/lyapunov_ex.png')

Random Walk

Image produced with this code:

basis = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
moves = pf.construct_moves(basis)
M = pf.random_walk(moves, 5000000, width=4, height=3, depth=1, dpi=300, displacement=0.0,
                   tracking='temporal', bias=0)
pf.images.random_walk_image(M, cmap=plt.cm.gist_yarg, gamma=1.0, single_color=False)
plt.savefig('example_images/random_walk_ex.png')

Buddhabrot with Nebula Coloring

Image produced with this code:

xbound = (-1.75, 0.85)
ybound = (-1.10, 1.10)

cvals = pf.compute_cvals(1000000, xbound, ybound, pf.updates.power, width=4, height=3, dpi=300)
bud0 = pf.buddhabrot(xbound, ybound, cvals, pf.updates.power, horizon=1.0E6, maxiter=100,
                     width=5, height=4, dpi=300)
bud1 = pf.buddhabrot(xbound, ybound, cvals, pf.updates.power, horizon=1.0E6, maxiter=1000,
                     width=5, height=4, dpi=300)    
bud2 = pf.buddhabrot(xbound, ybound, cvals, pf.updates.power, horizon=1.0E6, maxiter=10000,
                     width=5, height=4, dpi=300)

pf.images.nebula_image(bud0, bud1, bud2, gamma=0.4)
plt.savefig('example_images/buddhabrot_ex.png')

Current Status

There are functions for Mandelbrot and Julia set generation, image and animation creation. There is a function for Buddhabrot generation and a function for the "nebula" coloring of the Buddhabrot. There is a class for creating and visualizaing 2- and 3-dimensional random walks (with bias, if desired). The most recent addition is a function for generating Markus-Lyapunov fractals, with a special image function for the "classic" blue/green coloring.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyfracgen-0.0.2.tar.gz (11.5 MB view details)

Uploaded Source

Built Distribution

pyfracgen-0.0.2-py3-none-any.whl (14.3 kB view details)

Uploaded Python 3

File details

Details for the file pyfracgen-0.0.2.tar.gz.

File metadata

  • Download URL: pyfracgen-0.0.2.tar.gz
  • Upload date:
  • Size: 11.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for pyfracgen-0.0.2.tar.gz
Algorithm Hash digest
SHA256 b0e2b0059c25ed188b5c335d17527e1e7e5792bdedbdf7ddc821c49f287eeedc
MD5 19fa3877a56575e33215a96ae966c0f6
BLAKE2b-256 355c6537dcf92db38c3430370c4c0ca80520093fc854803ecc145ce48a896491

See more details on using hashes here.

Provenance

File details

Details for the file pyfracgen-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: pyfracgen-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 14.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for pyfracgen-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 e9c9687ca837a3468df837747f51fe787d2f18481b6ff8e2e86cc3aec4b86454
MD5 3643fe5096e6be8bbf4e668fcf28d2ed
BLAKE2b-256 40591d82f9bb4e9f3eddcd54578794965b39865e1c3bb8fdc5c0bc89e7d97fab

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page