Python Fractal Generation is a package for generating aesthetic fractal images quickly and (hopefully) easily
Project description
Authors
- Ryther Anderson
Description
Python Fractal Generation is a package for making interesting/aesthetic fractal images quickly and (hopefully) easily. A multitude of unique fractals (from various views) can be generated using only a few functions. Each fractal generation function returns a result object containing an array of floats that can be converted into an image, the desired width/height in inches, and the number of pixels per inch. This result object can be passed to various image creation functions that assign colors to the fractal array based on a colormap (or creates RGB channels from the array).
Installation
pyfracgen can currently be installed from the following sources:
Git
git clone https://github.com/rytheranderson/pyfracgen.git
cd pyfracgen
pip install .
PyPi
pip install pyfracgen
Example Images
All the package functions can be accessed from a single import:
import pyfracgen as pf
from matplotlib import pyplot as plt
Mandelbrot Set
Image produced with this code:
# x and y boundaries, x being the real part and y being the imaginary part in the complex plane
xbound = (0.3602404434376143632361252444495 - 0.00000000000003,
0.3602404434376143632361252444495 + 0.00000000000025)
ybound = (-0.6413130610648031748603750151793 - 0.00000000000006,
-0.6413130610648031748603750151793 + 0.00000000000013)
mymap = pf.images.stack_cmaps(plt.cm.gist_gray, 50)
man = pf.mandelbrot(xbound, ybound, pf.updates.power, width=4, height=3, maxiter=5000, dpi=300)
pf.images.image(man, cmap=mymap, gamma=0.8)
plt.savefig('example_images/mandelbrot_ex.png')
Julia Set Animation
Animation produced with this code:
c_vals = np.array([complex(i, 0.75) for i in np.linspace(0.05, 3.0, 100)])
s = pf.julia_series(c_vals, (-1, 1), (-0.75, 1.25), pf.updates.magnetic_2, maxiter=100,
width=4, height=3, dpi=200)
pf.images.save_animation(s, gamma=0.9, cmap=plt.cm.gist_ncar,
filename='example_images/julia_animation_ex')
Markus-Lyapunov Fractal
Image produced with this code:
im = pf.lyapunov(string, xB, yB, maxiter=80, dpi=300, width=4, height=3)
pf.images.image(im, gamma=3.0, vert_exag=10000.0, cmap=plt.cm.gray)
plt.savefig('example_images/lyapunov_ex.png')
Random Walk
Image produced with this code:
basis = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
moves = pf.construct_moves(basis)
M = pf.random_walk(moves, 5000000, width=4, height=3, depth=1, dpi=300, displacement=0.0,
tracking='temporal', bias=0)
pf.images.random_walk_image(M, cmap=plt.cm.gist_yarg, gamma=1.0, single_color=False)
plt.savefig('example_images/random_walk_ex.png')
Buddhabrot with Nebula Coloring
Image produced with this code:
xbound = (-1.75, 0.85)
ybound = (-1.10, 1.10)
cvals = pf.compute_cvals(1000000, xbound, ybound, pf.updates.power, width=4, height=3, dpi=300)
bud0 = pf.buddhabrot(xbound, ybound, cvals, pf.updates.power, horizon=1.0E6, maxiter=100,
width=5, height=4, dpi=300)
bud1 = pf.buddhabrot(xbound, ybound, cvals, pf.updates.power, horizon=1.0E6, maxiter=1000,
width=5, height=4, dpi=300)
bud2 = pf.buddhabrot(xbound, ybound, cvals, pf.updates.power, horizon=1.0E6, maxiter=10000,
width=5, height=4, dpi=300)
pf.images.nebula_image(bud0, bud1, bud2, gamma=0.4)
plt.savefig('example_images/buddhabrot_ex.png')
Current Status
There are functions for Mandelbrot and Julia set generation, image and animation creation. There is a function for Buddhabrot generation and a function for the "nebula" coloring of the Buddhabrot. There is a class for creating and visualizaing 2- and 3-dimensional random walks (with bias, if desired). The most recent addition is a function for generating Markus-Lyapunov fractals, with a special image function for the "classic" blue/green coloring.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pyfracgen-0.0.2.tar.gz
.
File metadata
- Download URL: pyfracgen-0.0.2.tar.gz
- Upload date:
- Size: 11.5 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b0e2b0059c25ed188b5c335d17527e1e7e5792bdedbdf7ddc821c49f287eeedc |
|
MD5 | 19fa3877a56575e33215a96ae966c0f6 |
|
BLAKE2b-256 | 355c6537dcf92db38c3430370c4c0ca80520093fc854803ecc145ce48a896491 |
Provenance
File details
Details for the file pyfracgen-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: pyfracgen-0.0.2-py3-none-any.whl
- Upload date:
- Size: 14.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e9c9687ca837a3468df837747f51fe787d2f18481b6ff8e2e86cc3aec4b86454 |
|
MD5 | 3643fe5096e6be8bbf4e668fcf28d2ed |
|
BLAKE2b-256 | 40591d82f9bb4e9f3eddcd54578794965b39865e1c3bb8fdc5c0bc89e7d97fab |